Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172702, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38657810

RESUMEN

Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils. Si-induced changes in the rhizosphere also included enhanced dissolved organic carbon and diminished soil Eh, particularly in the Si400 treatment. Meanwhile, the introduction of Si greatly enhanced the Fe2+ and Mn2+ concentrations in the S1 soil, but reduced them in the S2 soil. The rhizosphere effect of Si which enriched Fe2+ and Mn2+ subsequently promoted the formation of Fe and Mn oxides/hydro-oxides near the rice roots. Consequently, the addition of Si significantly reduced the available Cd concentrations in S1, surpassing the reductions in S2 and S3. Moreover, Si-treated rice exhibited increased Fe plaque generation and fixation on soil Cd, resulting in decreased Cd concentrations in rice tissues, accompanied by reduced Cd translocation from roots to shoots and shoots to grains. Structural equation modelling further highlighted that Si is essential in Cd availability in S1 and Fe plaque development, ultimately mitigating Cd accumulation in rice. Si-treated rice also exhibited higher biomass and grain yield than those of control groups. These findings provide valuable insights into Si-based strategies for addressing the Cd contamination of agricultural soils.


Asunto(s)
Cadmio , Oryza , Rizosfera , Silicio , Contaminantes del Suelo , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Disponibilidad Biológica , Raíces de Plantas , Fertilizantes
2.
Biochem Biophys Rep ; 37: 101641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288283

RESUMEN

Cadmium (Cd) contamination presents a significant challenge in global agriculture. This study explores the efficacy of chemical induction, specifically using sodium chloride (NaCl), to limit Cd uptake in tobacco (Nicotiana tabacum) and assesses its impact on essential divalent metal ions (DMIs). We conducted a comprehensive analysis encompassing ion absorption, root histology, and biochemistry to understand the influence of this method. Our results revealed that NaCl induction led to a notable 30 % decrease in Cd absorption, while maintaining minimal impact on zinc (Zn) uptake. Intriguingly, the absence of essential DMIs, such as calcium (Ca), magnesium (Mg), and Zn, was found to diminish the plant's capacity to absorb Cd. Furthermore, moderate NaCl induction resulted in an increased diameter of the root stele and enhanced lignin content, indicating a restriction of Cd absorption through the apoplastic pathway. Conversely, a compensatory absorption mechanism via the symplastic pathway appeared to be activated in the absence of essential elements. These findings highlight the potential of chemical induction as a strategy to mitigate agricultural Cd risks, offering insights into the complex interplay between plant ion transport pathways and metal uptake regulation.

3.
J Environ Manage ; 351: 119798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103426

RESUMEN

With climate change and urbanization, flood disasters have significantly affected urban development worldwide. In this study, we developed a paradigm to assess flood economic vulnerability and risk at the urban mesoscale, focusing on urban land use. A hydrological simulation was used to evaluate flood hazards through inundation analyses, and a hazard-vulnerability matrix was applied to assess flood risk, enhancing the economic vulnerability assessment by quantifying the differing economic value and flood losses associated with different land types. The case study of Wangchengpo, Changsha, China, found average total economic losses of 126.94 USD/m2, with the highest risk in the settlement core. Residential areas had the highest flood hazard, vulnerability, and losses (61.10% of the total loss); transportation areas accounted for 27.87% of the total economic losses due to their high flooding depth. Despite low inundation, industrial land showed greater economic vulnerability due to higher overall economic value (10.52% of the total). Our findings highlight the influence of land types and industry differences on flood vulnerability and the effectiveness of land-use inclusion in urban-mesoscale analyses of spatial flood characteristics. We identify critical areas with hazard and economic vulnerability for urban land and disaster prevention management and planning, helping to offer targeted flood control strategies to enhance urban resilience.


Asunto(s)
Desastres , Inundaciones , Desastres/prevención & control , Medición de Riesgo , Urbanización , China
4.
Environ Sci Pollut Res Int ; 27(30): 37410-37418, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32399872

RESUMEN

Cadmium (Cd) pollution threatens agricultural security worldwide. This study tested the efficacy of priming chemicals to decrease Cd uptake by tobacco plants (Nicotiana tabacum). After initial screening from nine different chemicals (NaCl, Cd(CH3COO)2, Cd(NO3)2, CdCl2, KHNO3, polyethylene glycol 6000 (PEG-6000), indole-3-acetic acid (IAA), ß-aminobutyric acid (BABA), and glutathione (GSH)), NaCl and PEG-6000 were further investigated because of their low risks to plant growth and efficiency to Cd reduction. Priming procedures (concentrations) were optimized for both chemicals and the best one (100 mM NaCl) was used to test both soil and hydroponic media. The results showed 31.3% lower Cd concentrations in shoots after priming with 100 mM NaCl. Phenotype parameters of the plants were also measured and showed no significant impacts of the priming procedures on the shoot biomass and the uptakes of nitrogen (N), phosphorus (P), and potassium (K), nor the photosynthetic capacity (net photosynthesis rate (Pn) and chlorophyll concentration (SPAD)). Histological observations of the roots showed a significant increase of the stele diameter after NaCl priming and a subsequent negative correlation between shoot Cd concentration and stele diameter was found after NaCl priming at different levels. This study confirmed 100 mM NaCl as an efficient priming treatment to decrease Cd uptake and the coarsening of the root stele was identified as a potential explanation for the observed decrease of Cd in tobacco shoots.


Asunto(s)
Cadmio , Contaminantes del Suelo , Clorofila , Fotosíntesis , Raíces de Plantas , Cloruro de Sodio , Nicotiana
5.
Genes (Basel) ; 11(2)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093127

RESUMEN

Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for plant development, defense, and metabolic homeostasis. AaCOI1 from Artemisia annua, homologous to Arabidopsis AtCOI1, encodes a F-box protein located in the nuclei. Expressional profiles of the AaCOI1 in the root, stem, leaves, and inflorescence was investigated. The mRNA abundance of AaCOI1 was the highest in inflorescence, followed by in the leaves. Upon mechanical wounding or MeJA treatment, expression of AaCOI1 was upregulated after 6 h. When ectopically expressed, driven by the native promoter from Arabidopsis thaliana, AaCOI1 could partially complement the JA sensitivity and defense responses, but fully complemented the fertility, and the JA-induced anthocyanin accumulation in a coi1-16 loss-of-function mutant. Our study identifies the paralog of AtCOI1 in Artemisia annua, and revealed its implications in development, hormone signaling, defense, and metabolism. The results provide insight into JA perception in Artemisia annua, and pave the way for novel molecular breeding strategies in the canonical herbs to manipulate the anabolism of pharmaceutic compounds on the phytohormonal level.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Artemisininas/metabolismo , Ciclopentanos/metabolismo , Proteínas F-Box , Indenos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Transducción de Señal
6.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4581-4587, 2019 Nov.
Artículo en Chino | MEDLINE | ID: mdl-31872651

RESUMEN

The biological characteristics,agronomic traits,yield traits,stress resistance,quality and photosynthetic characteristics among six lily varieties were compared in order to screen out the excellent lily varieties suitable for spread planting in Hunan province. Lilium longiflorum had the longest growth period,246 days,among these six lily varieties,while others were about 170 days. The leaves of L.longiflorum,self-selected variety,L. lancifolium and L. dauricum had higher chlorophyll content. No obvious difference was found in net photosynthetic rate,stomatal conductance,transpiration rate and intercellular CO2 concentration among all varieties. The self-selected variety had the highest theoretical and actual yield,2 543. 03,1 608. 65 kg per Mu(1 Mu≈666. 7 m2),respectively,but contents of polysaccharides and flavones in bulbs were lower. All of these six lily varieties can sowing,seedling emergence,growth,flowering,mature harvest in Hunan province. L. dauricum and L. lancifolium would be provided for edible lily. L. brownie and the self-selected variety are highly susceptible varieties. L. dauricum and L. lancifolium are suitable to plant widely in disease-prone regions,due to their strong resistance. L. brownie and L. lancifolium are preferred varieties for medicinal and food using for their good quality and higher contents of polysaccharides and flavones. L. davidii had lower theoretical and actual yield,so planting extension of it should be taken into account.


Asunto(s)
Lilium , Fotosíntesis , Clorofila , Hojas de la Planta , Raíces de Plantas
7.
Sci Rep ; 7(1): 9264, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835696

RESUMEN

Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, Tday/Tnight) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, Tnight had a great influence on fiber elongation, which means Tn could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.

8.
Funct Plant Biol ; 42(9): 909-919, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32480733

RESUMEN

Global warming has the potential to increase air temperatures by 1.8 to 4.0°C by the end of the 21st century. In order to reveal the effects of increased temperatures on the sucrose metabolism and cellulose synthesis in cotton fibre during its flowering and boll formation stage, field experiments with elevated temperature regimes (32.6/28.6°C, mean daytime/night-time temperature during flowering and boll formation stage during 2010-12, the same below) and ambient temperature regimes (30.1/25.8°C) were conducted. Activities of sucrose synthase and acid/alkaline invertase decreased under elevated temperature in fibre, but activities of sucrose phosphate synthase were increased. Callose content increased, but sucrose content decreased within the cotton fibre under elevated temperature. The disparity of callose content and sucrose content between the two temperature regimes decreased with the number of days post anthesis, indicating that the effects of elevated temperature on both sucrose content and cellulose content were diminished as the boll matured. Due to the dynamics of the carbohydrate content and associated enzyme activities, we hypothesise that the restrained sucrose metabolism and cellulose biosynthesis under elevated temperatures were mainly attributed to the changed activities of sucrose synthase and invertase. Furthermore, 32.6/28.6°C had a negative effect on the cellulose synthesis compared with 30.1/25.8°C.

9.
Ying Yong Sheng Tai Xue Bao ; 24(12): 3501-7, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24697071

RESUMEN

To study the effect of temperature increase in boll period (13-Jul. to 24-Aug. ) on cotton yield and fiber quality under the global warming background, a pot experiment with cotton cultivar Simian 3 was carried out in half-open-top greenhouse in Pailou experiment station (32 degrees 02' N, 118 degrees 50' E) of Nanjing Agricultural University in 2010 and 2011. The results indicated that when the temperature was increased by 2-3 degrees C (with an average daily temperature of 31.1 to 35.2 degrees C), the biomass declined by 10%, while the cotton yield declined by 30%-40%. The fiber quality also changed significantly with the relative indices responding differently. The micronaire value and fiber strength increased, the fiber length reduced while the fiber uniformity and elongation rate changed little. The plant photosynthesis capability, the biomass accumulation and the ability of carbohydrates transferring to sink organs all deceased. The soluble amino acids, soluble sugar, sucrose and C/N decreased significantly, while the starch content increased significantly. The allocation in vegetative organs was increased while that in reproductive organs was reduced, which in turn declined the economical index. The lower fruit branches were affected little under increased temperature condition while the middle, upper and top branches were affected greatly. The results indicated that, under the 2-3 degrees C warmer condition, the cotton plants experienced the high temperature stress, both the photosynthesis ability and the carbohydrates transportation from source to sink were decreased, leading to the decline of cotton yield.


Asunto(s)
Fibra de Algodón , Gossypium/crecimiento & desarrollo , Temperatura , Agricultura , Biomasa , Fotosíntesis , Almidón , Sacarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA