Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137535

RESUMEN

Metformin plasma exposure is increased in rats with thioacetamide (TAA)-induced liver failure. The absorption, distribution, and excretion process of metformin is mainly mediated by organic cation transporters (OCTs) and multidrug and toxin extrusion transporters (MATEs). To investigate the mechanisms of the increase in TAA-induced metformin plasma exposure, we employed intestinal perfusion and urinary excretion assays to evaluate the changes in the absorption and excretion of metformin and used Western blotting to investigate the metformin-related transport proteins' expression changes and mechanisms. The results showed that neither intestinal OCT2 expression nor metformin intestinal absorption were significantly altered by TAA-induced liver failure, while significantly decreased expression and function of renal OCT2 and MATE1 as well as impaired metformin excretion were observed in TAA rats. HK-2 cells were used as an in vitro model to explore the mechanism of liver-failure-mediated downregulation in renal OCT2 and MATE1. The results demonstrated that among numerous abnormal substances that changed in acute liver failure, elevated estrogen levels and tumor necrosis factor-α were the main factors mediating the downregulation of OCT2 and MATE1. In conclusion, this study highlights the downregulation of renal OCT2 and MATE1 in liver injury and its regulatory mechanism and reveals its roles in the increase in TAA-mediated metformin plasma exposure.

2.
J Med Chem ; 65(10): 7296-7311, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35535860

RESUMEN

The high mortality rate of invasive fungal infections and quick emergence of drug-resistant fungal pathogens urgently call for potent antifungal agents. Inspired by the cell penetrating peptide (CPP) octaarginine (R8), we elongated to 28 residues poly(d,l-homoarginine) to obtain potent toxicity against both fungi and mammalian cells. Further incorporation of glutamic acid residues shields positive charge density and introduces partial zwitterions in the obtained optimal peptide polymer that displays potent antifungal activity against drug-resistant fungi superior to antifungal drugs, excellent stability upon heating and UV exposure, negligible in vitro and in vivo toxicity, and strong therapeutic effects in treating invasive fungal infections. Moreover, the peptide polymer is insusceptible to antifungal resistance owing to the unique CPP-related antifungal mechanism of fungal membrane penetration followed by disruption of organelles within fungal cells. All these merits imply the effectiveness of our strategy to develop promising antifungal agents.


Asunto(s)
Péptidos de Penetración Celular , Infecciones Fúngicas Invasoras , Animales , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Péptidos de Penetración Celular/farmacología , Farmacorresistencia Fúngica , Hongos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Mamíferos , Polímeros/farmacología
3.
Adv Sci (Weinh) ; 9(14): e2104871, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307990

RESUMEN

Potent and selective antifungal agents are urgently needed due to the quick increase of serious invasive fungal infections and the limited antifungal drugs available. Microbial metabolites have been a rich source of antimicrobial agents and have inspired the authors to design and obtain potent and selective antifungal agents, poly(DL-diaminopropionic acid) (PDAP) from the ring-opening polymerization of ß-amino acid N-thiocarboxyanhydrides, by mimicking ε-poly-lysine. PDAP kills fungal cells by penetrating the fungal cytoplasm, generating reactive oxygen, and inducing fungal apoptosis. The optimal PDAP displays potent antifungal activity with minimum inhibitory concentration as low as 0.4 µg mL-1 against Candida albicans, negligible hemolysis and cytotoxicity, and no susceptibility to antifungal resistance. In addition, PDAP effectively inhibits the formation of fungal biofilms and eradicates the mature biofilms. In vivo studies show that PDAP is safe and effective in treating fungal keratitis, which suggests PDAPs as promising new antifungal agents.


Asunto(s)
Antifúngicos , Polímeros , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans , Pruebas de Sensibilidad Microbiana , Péptidos , Polímeros/química
4.
J Mater Chem B ; 9(25): 5092-5101, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128037

RESUMEN

Multidrug-resistant bacterial infections are a grand challenge to global medical and health systems. Therefore, it is urgent to develop versatile antibacterial strategies that can combat bacterial resistance without displaying toxicity. Here, we synthesize antibacterial polypeptide-conjugated gold nanoparticles that exhibit potent antibacterial activities against clinically isolated multiple drug resistance Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, and excellent in vitro and in vivo biocompatibility. The antibacterial mechanism study indicates that over-production of reactive oxygen species results in the killing of bacteria. The overall antibacterial performance of these polypeptide-conjugated gold nanoparticles and the convenient synthesis of these polypeptides via lithium hexamethyldisilazide-initiated fast ring-opening polymerization on α-amino acid N-carboxyanhydride imply the potential application of this strategy in treating bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Oro/farmacología , Nanopartículas del Metal/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Oro/química , Pruebas de Sensibilidad Microbiana , Péptidos/química
5.
Biomater Sci ; 8(24): 6883-6889, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32960197

RESUMEN

Infections involving methicillin-resistant Staphylococcus aureus present great challenges, especially when biofilms and persister cells are involved. In this work, an α/ß chimeric polypeptide molecular brush (α/ß CPMB) is reported to show excellent performance in inhibiting the formation of biofilms and eradicating established biofilms. Additionally, the polymer brush efficiently killed metabolically inactive persister cells that are antibiotic-insensitive. Antimicrobial mechanism studies showed that α/ß CPMB causes membrane disturbance and a substantial increase in reactive oxygen species (ROS) levels to kill bacteria, and mesosome-like structure formation was also observed. Furthermore, the polymer brush was able to kill clinically isolated multidrug resistant Gram-positive bacteria with no risk of antimicrobial resistance. The α/ß CPMB has demonstrated great potential in addressing the great challenge of eradicating multidrug resistant Gram-positive bacterial infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
6.
ACS Infect Dis ; 6(3): 479-488, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922723

RESUMEN

Multidrug-resistant (MDR) bacteria have emerged quickly and have caused serious nosocomial infections. It is urgent to develop novel antimicrobial agents for treating MDR bacterial infections. In this study, we isolated 45 strains of bacteria from hospital patients and found shockingly that most of these strains were MDR to antimicrobial drugs. This inspired us to explore antimicrobial peptide polymers as synthetic mimics of host defense peptides in combating drug-resistant bacteria and the formidable antimicrobial challenge. We found that peptide polymer 80:20 DM:Bu (where DM is a hydrophilic/cationic subunit and Bu is a hydrophobic subunit) displayed fast bacterial killing, broad spectrum, and potent activity against clinically isolated strains of MDR bacteria. Moreover, peptide polymer 80:20 DM:Bu displayed potent in vivo antibacterial efficacy, comparable to the performance of polymyxin B, in a Pseudomonas aeruginosa (P. aeruginosa) infected rat full-thickness wound model. The peptide polymer can be easily synthesized from ring-opening polymerization with remarkable reproducibility in structural properties and biological activities. The peptide polymer's potent and broad spectrum antimicrobial activities against MDR bacteria in vitro and in vivo, resistance to proteolysis, and high structural diversity altogether imply a great potential of peptide polymer 80:20 DM:Bu in antimicrobial applications as synthetic mimics of host defense peptides.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Polímeros/química , Animales , Femenino , Pruebas de Sensibilidad Microbiana , Polímeros/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
7.
Biomater Sci ; 8(2): 739-745, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31782423

RESUMEN

Multidrug resistant (MDR) Pseudomonas aeruginosa has caused serious nosocomial infections owing to its high intrinsic resistance and ease of acquiring resistance to common antibiotics. There is an urgent need to develop antimicrobial agents against MDR Pseudomonas aeruginosa. Here we report a 27-mer peptide polymer 90 : 10 DLL : BLG, as a synthetic mimic of a host defense peptide, that displayed potent in vitro and in vivo activities against multiple strains of clinically isolated MDR Pseudomonas aeruginosa, performing even better than antibiotics within our study. This peptide polymer also showed negligible hemolysis and low cytotoxicity, as well as quick bacterial killing efficacy. The structural diversity of peptide polymers, their easy synthesis from lithium hexamethyldisilazide-initiated fast N-carboxyanhydride polymerization, and the excellent reproducibility of their chemical structure and biological profiles altogether suggested great potential for antimicrobial applications of peptide polymers as synthetic mimics of host defense peptides.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Péptidos/farmacología , Polímeros/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Polímeros/síntesis química , Polímeros/química , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
8.
Biomater Sci ; 7(9): 3675-3682, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31322153

RESUMEN

Proteins are fragile such that even freezing, drying and dehydration may induce their denaturation, aggregation, and activity loss. To protect proteins from these kinds of damage, we prepared two types of amino acid polymers, poly-(l-glutamate)-r-poly-(l-lysine) (PLG-r-PLL) and poly-l-glutamate (PLG), from the efficient ring-opening polymerization of α-amino acid N-carboxyanhydride (NCA) using lithium hexamethyldisilazide (LiHMDS) as the initiator. ß-galactosidase (ß-Gal) was used in this study to examine the protein protecting effect of the synthesized amino acid polymers during lyophilization. The results indicate that both PLG-r-PLL and PLG exert significant protection on ß-Gal during lyophilization and improve the activity of the resulting protein from 40%, without using a protecting agent during lyophilization, to 80% of the original protein activity. Nevertheless, PLG generally performs better than PLG-r-PLL independent of the chain length. Our studies also show that PLG and PLG-r-PLL with a high content of PLG subunits display no observable cytotoxicity and hemolytic effect. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization indicate that PLG protects ß-Gal upon lyophilization by preventing the aggregation of ß-Gal. Our studies demonstrate that amino acid polymers, such as PLG, can exert potent activity for protein stabilization. The easy operation of LiHMDS-initiated and efficient NCA polymerization implies the great potential of this strategy to prepare amino acid polymers quickly for the screening of protein stabilization and mechanism study.


Asunto(s)
Aminoácidos/farmacología , Anhídridos/farmacología , Polímeros/farmacología , beta-Galactosidasa/metabolismo , Aminoácidos/química , Anhídridos/química , Polímeros/síntesis química , Polímeros/química , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...