RESUMEN
Egg turning in incubation is crucial to the development of embryos and hatching performance. We aimed to develop a high performance duck egg incubation technique by enlarging and changing egg turning angles. Increasing turning angle from 45 to 75° did not affect the embryo early mortality during the first 15 d of incubation, which ranged from 3.5 to 4.0%, but accelerated chorioallantoic membrane (CAM) development by 17 h, and significantly (P < 0.01) reduced the late mortality from 9.4 ± 0.98% to 5.31 ± 0.63%. As the result, fertile egg hatchability increased from 91.03 ± 0.97% to 94.64 ± 0.61% (P < 0.05), so was healthy duckling rate from 87.24 ± 1.17% to 92.08 ± 0.55% (P < 0.05), and duckling live weight from 60.74 ± 0.63 g to 63.15 ± 0.35 g (P < 0.05). Changing turning angle from 75°to 60°during incubation d 15 to 25 further reduced late embryo mortality to 3.88 ± 0.47 and increased hatchability to 96.58 ± 0.68%. This changing angle turning hatched ducklings exhibited the highest growth performance during rearing than those hatched by 45 and 75° egg turning. The enhanced growth rate was paralleled by upregulations of somatotropic axis genes mRNA expression levels of the hypothalamus GHRH, liver GHR and IGF-1 during embryo incubation and duckling rearing. In conclusion, a changing angle egg turning incubation technique, 75°in the first 15 d and 60°thereafter, can enhance CAM development, upregulate somatotropic axis genes expressions, and can maximally improve embryo livability, duckling hatchability and growth performance.
Asunto(s)
Patos , Óvulo , Animales , Patos/fisiología , Óvulo/fisiología , Femenino , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Crianza de Animales Domésticos/métodos , Membrana CorioalantoidesRESUMEN
Low or insufficient testosterone levels caused by caponization promote fat deposition in animals. However, the molecular mechanism of fat deposition in caponized animals remains unclear. This study aimed to investigate the metabolomics and transcriptomic profiles of adipose tissues and study the effect of testosterone and leptin on the proliferation of adipocytes. We observed a significant enlargement in the areas of adipocytes in the abdominal fat tissues in capon, as well as increased luciferase activity of the serum leptin and a sharp decrease in the serum testosterone in caponized gander. Metabolomics and transcriptomic results revealed differentially expressed genes and differentially expressed metabolites with enhanced PARR signal pathway. The mRNA levels of peroxisome proliferators-activated receptor γ, fatty acid synthase, and suppressor of cytokine signaling 3 in goose primary pre-adipocytes were significantly upregulated with high leptin treatment and decreased significantly with increasing testosterone dose. Hence, reduced testosterone and increased leptin levels after caponization possibly promoted adipocytes proliferation and abdominal fat deposition by altering the expression of PPAR pathway related genes in caponized ganders. This study provides a new direction for the mechanism through which testosterone regulates the biological function of leptin and fat deposition in male animals.
Asunto(s)
Adipogénesis , Leptina , Transducción de Señal , Testosterona , Animales , Leptina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Adipogénesis/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Gansos/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Proliferación Celular/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , OrquiectomíaRESUMEN
Lipopolysaccharide (LPS) is one of the important pathogenic substances of E. coli and Salmonella, which causes injury to the reproductive system. Ovarian dysfunction due to Gram-negative bacterial infections is a major cause of reduced reproductive performance in geese. However, the specific molecular mechanisms of LPS-induced impairment of sex steroid hormone synthesis have not been determined. The regulatory mechanism of miRNA has been proposed in many physiological and pathogenic mechanisms. Therefore, the role of miRNA in breeding geese exposed to LPS during the peak laying period was investigated. In this study, twenty Yangzhou geese at peak laying period were injected with LPS for 0 h, 24 h, and 36 h. The follicular granulosa layer was taken for RNA-seq and analyzed for differentially expressed miRNAs. It was observed that LPS changed the appearance of hierarchical follicles. miRNA sequencing analysis was applied, and miR-21 and SMAD2 (SMAD family member 2) were selected from 51 differentially expressed miRNAs through bioinformatics prediction. The results showed that miR-21 down-regulated SMAD2 expression and progesterone (P4) production in LPS-treated goose granulosa cells (GCs). It also determined that overexpression of miR-21 or silence of SMAD2 suppressed the sex steroid biosynthesis pathway by decreasing STAR and CYP11A1 expression. Down-regulation of miR-21 exacerbates the LPS-induced decline in P4 synthesis and vice versa. The findings indicated that miR-21 was involved in LPS regulation of P4 synthesis in goose granulosa cells by down-regulating SMAD2. This study provides theoretical support for the prevention of LPS-induced ovarian dysfunction in geese.
RESUMEN
Heat stress (HS) induces various physiological disorders in poultry, negatively impacting feed intake, feed efficiency, and growth performance. Considering the documented anti-stress and growth-promoting benefits of monochromatic green light in poultry, we aimed to investigate its effects on cyclic chronic HS-induced oxidative stress (OS) and inflammation in geese. We established three treatment groups-geese exposed to white light (W), white light with HS treatment (WH), and green light with HS treatment (GH)-treated over a six-week period with daily HS sessions. The results revealed that cyclic chronic HS induced liver OS and inflammation, leading to hepatocellular injury and reduced growth performance and feed intake. In comparison, the growth performance of geese under green light significantly improved. Additionally, liver index, serum, liver malondialdehyde (MDA), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) levels were reduced. Serum total antioxidant capacity (T-AOC), liver catalase (CAT), and superoxide dismutase (SOD) activity were enhanced, reducing hepatic OS and inflammation. Liver transcriptomic analysis indicated that green light alleviates cyclic chronic HS-induced liver injury and promotes geese growth performance by suppressing NF-κB pathway activation.
RESUMEN
The poultry ovary is a preferred target for E. coli and Salmonella infection of tissues, and lipopolysaccharide (LPS) is a critical molecule in infecting the organism and interfering with cell function, invading the ovaries through the cloaca and interfering with progesterone (P4) secretion by follicular granulosa cells (GCs), seriously affecting the health of breeding geese. miRNAs are small, non-coding RNAs with a variety of important regulatory roles. To investigate the mechanism of miR-10a-5p mediated LPS inhibition of progesterone synthesis in goose granulosa cells, Yangzhou geese at peak laying period were selected as experimental animals to verify the expression levels of genes and transcription factors related to progesterone synthesis. In this study, bioinformatic predictions identified miR-10a-5p target gene CYP11A1, and genes and transcription factors related to the sex steroid hormone secretion pathway were screened. We detected that LPS inhibited CYP11A1 expression while increasing miR-10a-5p expression in vivo. Progesterone decreased significantly in goose granulosa cells treatment with 1 µg/mL LPS for 24 h, while progesterone-related genes and regulatory factors were also suppressed. We also determined that the downregulation of miR-10a-5p led to CYP11A1 expression. Overexpression of miR-10a-5p suppressed LPS-induced CYP11A1 expression, resulting in decreased progesterone secretion. Our findings indicated that miR-10a-5p was up-regulated by LPS and inhibited progesterone synthesis by down-regulating CYP11A1. This study provides insight into the molecular mechanisms regulating geese reproduction and ovulation.
RESUMEN
The present study investigated the effects of temperature on growth performance, slaughtering traits, meat quality and antioxidant function of Pekin ducks from 21-42 d of age. Single factor analysis of variance was used in this experiment, 144 21 d-old Pekin ducks were randomly allotted to 4 environmentally controlled chambers: T20 (20°C), T23 (23°C), T26 (26°C) and T29 (29°C), with 3 replicates in each group (12 ducks in each replicate), the relative humidity of all groups is 74%. During the 21-day trial period, feed and water were freely available. At 42 d, the BW (body weight) and ADG (average daily gain) of T26 were significantly lower than T20 (p < 0.05), and the T29 was significantly lower than T20 and T23 (p < 0.05). The ADFI (average daily feed intake) of T26 and T29 were significantly lower than T20 and T23 (p < 0.05). Compared to the T29, the T20 showed a significant increase oblique body length and chest width, and both the keel length and thigh muscle weight significantly increased in both the T20 and T23, while the pectoral muscle weight increased significantly in other groups (p < 0.05). The cooking loss of the T29 was the lowest (p < 0.05). The T-AOC (total antioxidant capacity) of T29 was significantly higher than the other groups (p < 0.05), the SOD (superoxide dismutase) in the T29 was significantly higher than the T23 and T26 (p < 0.05). In conditions of 74% relative humidity, the BW and ADFI of Pekin ducks significantly decrease when the environmental temperature exceeds 26°C, and the development of body size and muscle weight follows this pattern. The growth development and serum redox state of Pekin ducks are more ideal and stable at temperatures of 20°C and 23°C.
RESUMEN
The objective of this study was to investigate the effects of sex on meat quality and the composition of amino and fatty acids in the breast muscles of White King pigeon squabs. Untargeted metabolomics was also conducted to distinguish the metabolic composition of plasma in different sexes. Compared with male squabs, female squabs had greater intramuscular fat (IMF) deposition and lower myofiber diameter and hydroxyproline content, leading to a lower shear force. Female squabs also had higher monounsaturated fatty acid and lower n-6 and n-3 polyunsaturated fatty acid proportions in the breast muscle, and had greater lipogenesis capacity via upregulation of PPARγ, FAS and LPL gene expression. Moreover, female squabs had lower inosine 5'-monophosphate, essential, free and sweet-tasting amino acid contents. Furthermore, Spearman's correlations between the differential plasma metabolites and key meat parameters were assessed, and putrescine, N-acetylglutamic acid, phophatidylcholine (18:0/P-16:0) and trimethylamine N-oxide were found to contribute to meat quality. In summary, the breast meat of male squabs may have better nutritional value than that of females, but it may inferior in terms of sensory properties, which can be attributed to the lower IMF content and higher shear force value. Our findings enhance our understanding of sex variation in squab meat quality, providing a basis for future research on pigeon breeding.
Asunto(s)
Aminoácidos , Ácidos Grasos , Femenino , Masculino , Animales , Ácidos Grasos/análisis , Aminoácidos/metabolismo , Músculo Esquelético/química , Pollos/metabolismo , Carne/análisis , MetabolomaRESUMEN
This study aimed to investigate the effects of different humidity levels on the growth performance, slaughter performance, and meat quality of Pekin ducks through the artificial control of humidity, and to identify the suitable environmental humidity for Pekin duck growth. A completely randomized single-factor design was employed, selecting 144 newly hatched male Pekin ducks with healthy and similar BW (body weight) (60.92 g ± 4.38). These ducks were randomly assigned to four groups (A (RH (relative humidity) = 60%), B (RH = 67%), C (RH = 74%), D (RH = 81%)), with 12 ducks and 3 replicates in each group. The ducks were raised in a climate-controlled room for 42 days with ad libitum access to feed and water. BW and feed intake were measured every 3 days, and slaughter performance and meat quality were assessed at 42 days. There was no significant difference in the ADG (average daily gain) from 1 to 21 days (p > 0.05). The ADFI (average daily feed intake) of Group D was significantly lower than that of Groups A, B, and C (p < 0.05), with no significant differences between Groups A, B, and C (p > 0.05). At 42 days, the BW, ADG, and ADFI of Groups A and C were significantly higher than those of Group D (p < 0.05), with no significant differences among Groups A, B, and C (p > 0.05). Group C had a significantly higher breast muscle weight, breast muscle ratio, liver weight, and liver index than Groups B and D (p < 0.05), with no significant differences between Groups A, B, and D (p > 0.05). The meat shear force in Group C was significantly lower than that in Groups A, B, and D (p < 0.05). The L* (brightness) of Group C was significantly lower than that of Group A (p < 0.05), and the a* (redness) value of Group C was significantly higher than that of Groups A and B (p < 0.05), with no significant difference compared to Group D (p > 0.05). Group B had a significantly higher cooking loss than Groups A, C, and D (p < 0.05), with no significant differences among Groups A, C, and D (p > 0.05). Under 26 °C conditions, Pekin ducks perform best in terms of the production performance and feed efficiency, with high-quality meat, especially when reared at 74% humidity.
RESUMEN
The selection of follicles determines the reproductive performance of birds, but the process of follicle selection in geese is still elusive. This study focuses on Yangzhou geese during the egg-laying period and divides the follicular development process into three stages: small follicle development, follicle selection, and follicle maturation. Transcriptome sequencing was performed on granulosa cells from large white follicles, small yellow follicles, and F5 and F4 follicles. In addition, we selected the transcripts that remained unchanged during the development and maturation of small follicles but significantly changed during the follicular selection stage as the transcript collection that plays an important role in the follicular selection process. Then, we performed functional analysis on these transcripts and constructed a ceRNA network. The results showed that during the follicular selection stage, the number of differentially expressed mRNAs, miRNAs, and lncRNAs was the highest. In addition, miR-222-3p, miR-2954-3p, miR-126-5p, miR-2478, and miR-425-5p are potential key core regulatory molecules in the selection stage of goose follicles. These results can provide a reference for a better understanding of the basic mechanisms of the goose follicle selection process and potential targets for the precise regulation of goose egg production performance.
RESUMEN
The cause of double-yolk (DY) egg production in birds is unclear, but it is related to body weight and adiposity. We explored the causes of the high proportion (up to 26%) of DY eggs in the first clutch of Zhedong white geese. We recorded the egg production of Zhedong white geese during the first egg-laying cycle and counted the proportion of DY eggs. We found that 30% of geese had 3 sets of double or triple follicles of the same diameter in the abdomen, which was close to the DY egg rate. In addition, the mRNA expression levels of the steroidogenic acute regulatory protein (StAR) and luteinizing hormone receptor (LHR) genes in granulosa cells were similar within the same set of follicles. Furthermore, the IGF1 concentration in geese that had at least 3 sets of follicles of the same diameter was significantly higher than that in birds with 0-1 set of follicles of the same diameter. Thus, we proposed that, in the first egg-laying stage of geese, high plasma concentrations of IGF1 stimulate the development of pre-hierarchal follicles and cause more than one follicle to be selected at the same time, mature at the same rate under the same gonadotrophin milieu, and ovulate at the same time to produce DY eggs.
RESUMEN
Spexin (SPX, NPQ), a novel neuropeptide composed of 14 amino acid residues, is evolutionarily conserved among different species. Spexin has been suggested to have pleiotropic functions in mammals. However, reports on spexin in birds are limited. To clarify the role of spexin in goose reproduction, the spexin gene was cloned and analyzed. Analysis of tissue distribution by RT-PCR showed that the expression of spexin and its two receptors was widespread. During the long photoperiod, the expression levels of spexin in the pituitary and hypothalamus and of GALR2/3 in the pituitary decreased, and the GnRH, LHß, and FSHß expression levels increased significantly. This suggests that a long photoperiod regulates reproductive activities by activating the gonadotrope-axis, which is modulated by decreased spexin levels.
RESUMEN
In order to explore the role of follistatin (FST) in ovarian follicular development and egg production in Yangzhou geese, sixty-four egg laying geese of the same genetic origin were selected and divided into two groups with equal numbers. One group was immunized against the recombinant goose FST protein by intramuscular injection, whereas the control group received bovine serum albumin (BSA) injection. Immunization against FST significantly increased the number of pre-ovulatory follicles. Furthermore, immunization against FST upregulated Lhr, Star, Vldlr, Smad3, and Smad4 mRNA levels in the granulosa layer of pre-hierarchical follicles. The results suggest that FST plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles by decreasing follicular sensitivity to activin in geese. The mechanism may be achieved by regulating the SMAD3 signaling pathway, which affects progesterone synthesis and yolk deposition in pre-hierarchical follicles.
RESUMEN
In this study, we determined the effects of caponization on the growth performance and carcass traits of Yangzhou ganders. Fifty sham operated geese (the control group) and 80 caponized geese (the caponized group) were selected at 150 days of age and reared until 240 days of age. At 210 days of age, 30 geese from the caponized group were selected and fed with testosterone propionate (testosterone group). The results showed that caponization lowered testosterone and increased the total cholesterol and triglyceride concentrations in serum, live weights, average 15 day gains, and feed intake. Abdominal fat and intramuscular fat were significantly higher in the caponized geese than in the control at 240 days. Gene expression analysis showed that caponization promoted abdominal fat deposition and intermuscular fat content by upregulating the expression of adipogenic genes in the liver, adipose tissue, and muscle tissue. The high expression of SOCS3 in the hypothalamus, liver, and muscle of caponized geese suggests that caponization may lead to negative feedback regulation and leptin resistance. Changes in the expression of these genes, along with the downregulation of PAX3 in the breast muscle and MYOG in the leg muscles, indicate that caponization increases the live weight mainly by increasing fat deposition rather than muscle growth. These results expand our understanding of the mechanisms of caponization on growth performance and fat deposition in ganders.
RESUMEN
We aimed to investigate how wide-angle turning of eggs during incubation affected yolk utilization and the associated molecular mechanism, along with improved goose embryonic development. In total, 1152 eggs (mean weight: 143.33 ± 5.43 g) were divided equally and incubated in two commercial incubators with tray turning angles adjusted differently, to either 50° or 70°. Following incubation under the standard temperature and humidity level, turning eggs by 70° increased embryonic days 22 (E22), embryo mass, gosling weight at hatching, and egg hatchability, but reduced E22 yolk mass compared with those after turning eggs by 50°. Lipidomic analyses of the yolk revealed that egg turning at 70° reduced the concentrations of 17 of 1132 detected total lipids, including diglycerides, triglycerides, and phospholipids. Furthermore, the 70° egg turning upregulated the expression of genes related to lipolysis and fat digestion enzymes, such as lipase, cathepsin B, and prosaposin, as well as apolipoprotein B, apolipoprotein A4, very low-density lipoprotein receptor, low-density lipoprotein receptor-related protein 2, and thrombospondin receptor, which are genes involved in lipid transportation. Thus, a 70° egg turning angle during incubation enhances yolk utilization through the upregulation of lipolysis and fat digestion-related gene expression, thereby promoting embryonic development and improving egg hatchability and gosling quality.
RESUMEN
Since the COVID-19 epidemic is still expanding around the world and poses a serious threat to human life and health, it is necessary for us to carry out epidemic transmission prediction, whole genome sequence analysis, and public psychological stress assessment for 2019-nCoV. However, transmission prediction models are insufficiently accurate and genome sequence characteristics are not clear, and it is difficult to dynamically assess the public psychological stress state under the 2019-nCoV epidemic. Therefore, this study develops a 2019nCoVAS web service (http://www.combio-lezhang.online/2019ncov/home.html) that not only offers online epidemic transmission prediction and lineage-associated underrepresented permutation (LAUP) analysis services to investigate the spreading trends and genome sequence characteristics, but also provides psychological stress assessments based on such an emotional dictionary that we built for 2019-nCoV. Finally, we discuss the shortcomings and further study of the 2019nCoVAS web service.
Asunto(s)
COVID-19/epidemiología , Pandemias , SARS-CoV-2 , Navegador Web , Número Básico de Reproducción/estadística & datos numéricos , COVID-19/psicología , COVID-19/transmisión , China/epidemiología , Biología Computacional , Emociones , Variación Genética , Genoma Viral , Humanos , Internet , Modelos Estadísticos , Pandemias/estadística & datos numéricos , SARS-CoV-2/genética , Estrés Psicológico , Secuenciación Completa del GenomaRESUMEN
By reviewing previous CpG-related studies, we consider that the transcription regulation of about half of the human genes, mostly housekeeping (HK) genes, involves CpG islands (CGIs), their methylation states, CpG spacing and other chromosomal parameters. However, the precise CGI definition and positioning of CGIs within gene structures, as well as specific CGI-associated regulatory mechanisms, all remain to be explained at individual gene and gene-family levels, together with consideration of species and lineage specificity. Although previous studies have already classified CGIs into high-CpG (HCGI), intermediate-CpG (ICGI) and low-CpG (LCGI) densities based on CpG density variation, the correlation between CGI density and gene expression regulation, such as co-regulation of CGIs and TATA box on HK genes, remains to be elucidated. First, this study introduces such a problem-solving protocol for human-genome annotation, which is based on a combination of GTEx, JBLA and Gene Ontology (GO) analysis. Next, we discuss why CGI-associated genes are most likely regulated by HCGI and tend to be HK genes; the HCGI/TATA± and LCGI/TATA± combinations show different GO enrichment, whereas the ICGI/TATA± combination is less characteristic based on GO enrichment analysis. Finally, we demonstrate that Hadoop MapReduce-based MR-JBLA algorithm is more efficient than the original JBLA in k-mer counting and CGI-associated gene analysis.
Asunto(s)
Islas de CpG , Genes Esenciales , Anotación de Secuencia Molecular/métodos , Programas Informáticos , Metilación de ADN , Humanos , TATA BoxRESUMEN
Lipopolysaccharide (LPS) from gram-negative bacteria was found to be involved in the decrease in laying performance in goose flocks with high stocking density during summer months. LPS injection delayed the increase in the laying rate and altered hierarchical follicle morphology. While there is evidence that LPS exerts suppressive effects on goose reproduction, the time course effects of LPS on the hypothalamus-pituitary-ovary (HPG) axis remain elusive. In this study, we investigated the expression of genes in the HPG axis and the plasma gonadotrophin hormone concentrations in breeding geese at 0, 6, 12, 24, and 36 h after intravenous injection with LPS. The results showed that LPS treatment enhanced and suppressed expression of hypothalamic gonadotropin-inhibiting hormone (GnIH) and gonadotrophin-releasing hormone (GnRH) mRNA, respectively, and similar effects were observed on the mRNA expression of their receptors, GnIHR and GnRHR, in the pituitary. LPS treatment transiently increased follicle FSHß mRNA expression at 12 h and exerted no significant effect on LHß mRNA expression in the pituitary. Regardless of the expression of FSHß and LHß, plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations were significantly increased during 24-36 h after LPS treatment. In the ovary, StAR and Cyp11a1 were mainly expressed in the granulosa layer (GL) of hierarchical follicles, while Cyp17a1 and Cyp19a1 were mainly expressed in white follicles (WFs) and yellowish follicles (YFs), and to a lesser extent in the theca layer (TL). After LPS treatment, the mRNA levels of Cyp11a1 in the GLs, Cyp17a1 in the WFs and TL, and Cyp19a1 in the WFs, YFs, and TL were significantly decreased. However, LPS treatment transiently upregulated StAR expression at 12 h. These results indicate that the exposure of laying geese to LPS may impair the HPG axis and disturb ovarian steroidogenesis. Our research provides new insights into reproductive dysfunction caused by LPS and the immune challenge in birds.
RESUMEN
This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.
Asunto(s)
Ciego/microbiología , Dieta/veterinaria , Microbioma Gastrointestinal/fisiología , Gansos/crecimiento & desarrollo , Gansos/microbiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Fermentación , Microbioma Gastrointestinal/efectos de los fármacos , Gansos/metabolismo , Masculino , Distribución AleatoriaRESUMEN
BACKGROUND: The Yangzhou goose is a long-day breeding bird that has been increasingly produced in China. Artificial lighting programs are used for controlling its reproductive activities. This study investigated the regulations of photostimulation and photorefractoriness that govern the onset and cessation of the breeding period. RESULTS: Increasing the daily photoperiod from 8 to 12 h rapidly stimulated testis development and increased plasma testosterone concentrations, with peak levels being reached 2 months after the photoperiod increase. Subsequently, testicular activities, testicular weight, spermatogenesis, and plasma testosterone concentrations declined steadily and reached to the nadir at 5 months after the 12-hour photoperiod. Throughout the experiment, plasma concentrations of triiodothyronine and thyroxine changed in reciprocal fashions to that of testosterone. The stimulation of reproductive activities caused by the increasing photoperiod was associated with increases in gonadotropin-releasing hormone (GnRH), but decreases in gonadotropin-inhibitory hormone (GnIH) and vasoactive intestinal peptide (VIP) gene messenger RNA (mRNA) levels in the hypothalamus. In the pituitary gland, the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) mRNA abruptly increased during the longer 12-hour photoperiod. The occurrence of photorefractoriness was associated with increased GnIH gene transcription by over 250-fold, together with increased VIP mRNA levels in the hypothalamus, and then prolactin and thyroid-stimulating hormone in the pituitary gland. FSH receptor, LH receptor, and StAR mRNA levels in the testis changed in ways paralleling those of testicular weight and testosterone concentrations. CONCLUSIONS: The seasonal reproductive activities in Yangzhou geese were directly stimulated by a long photoperiod via upregulation of GnRH gene transcription, downregulation of GnIH, VIP gene transcription, and stimulation of gonadotrophin. Development of photorefractoriness was characterized by hyper-regulation of GnIH gene transcription in the hypothalamus, in addition of upregulation of VIP and TRH gene transcription, and that of their receptors, in the pituitary gland.
RESUMEN
The ovary of Chinese goose is easily infected by microorganisms because of the mating behaviour in water, which causes decreased laying performance. This study investigated the time course effect of lipopolysaccharide (LPS) on the steroidogenesis and mRNA expression of Toll-like receptors (TLRs), a class of key pattern recognition receptor, in the breeding goose ovary. The laying geese were treated intravenously with LPS for 0, 6, 12, 24 and 36 h, and all birds were slaughtered approximately 8 h after oviposition. The expression levels of TLRs in the white and yellowish follicles, and granulosa and theca layers of hierarchical follicles were examined by real-time PCR. All 10 members of avian TLR family were differentially expressed among the different follicular tissues. Moreover, at 24 and 36 h after LPS treatment, the hierarchical follicle morphological structure was altered, but the expression levels of TLRs were still higher than the control. Furthermore, during LPS treatment period, the expression pattern of TLRs 2A and 4 genes was similar to that of TLR15 in the white follicles, TLRs 1B, 5 and 15 in the yellowish follicles, TLRs 7 and 15 in the granulosa layer, and TLRs 1A, 2B, 3, 7 and 15 in the theca layer, which had a negative correlation with the kinetics of plasma P4 and E2 concentrations. In conclusion, the mechanism by which pathogen infection inhibited goose follicular growth and further decreased egg production may involve a gradually enhanced inflammatory response and reduced endocrine function. This may be due to stimulated TLRs in the ovary.