Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(2): 162-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537379

RESUMEN

Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a 'bypass' secondary structural motif (residues S19-P25). This study explored potential tuning of peptide selectivity through modification to residues 19-22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos , Receptores de Calcitonina , Humanos , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Obesidad , Lípidos
2.
ACS Pharmacol Transl Sci ; 2(1): 31-51, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32219215

RESUMEN

The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.1 Å structure of the activated CTR bound to salmon CT (sCT) and heterotrimeric Gs protein by cryo-electron microscopy (Liang, Y.-L., et al. Phase-plate cryo- EM structure of a class B GPCR-G protein complex. Nature 2017, 546, 118-123). In the current study, we have reprocessed the electron micrographs to yield a 3.3 Å map of the complex. This has allowed us to model extracellular loops (ECLs) 2 and 3, and the peptide N-terminus that previously could not be resolved. We have also performed alanine scanning mutagenesis of ECL1 and the upper segment of transmembrane helix 1 (TM1) and its extension into the receptor extracellular domain (TM1 stalk), with effects on peptide binding and function assessed by cAMP accumulation and ERK1/2 phosphorylation. These data were combined with previously published alanine scanning mutagenesis of ECL2 and ECL3 and the new structural information to provide a comprehensive 3D map of the molecular surface of the CTR that controls binding and signaling of distinct CT and related peptides. The work highlights distinctions in how different, related, class B receptors may be activated. The new mutational data on the TM1 stalk and ECL1 have also provided critical insights into the divergent control of cAMP versus pERK signaling and, collectively with previous mutagenesis data, offer evidence that the conformations linked to these different signaling pathways are, in many ways, mutually exclusive. This study furthers our understanding of the complex nature of signaling elicited by GPCRs and, in particular, that of the therapeutically important class B subfamily.

3.
ACS Pharmacol Transl Sci ; 2(3): 183-197, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219220

RESUMEN

Amylin is coexpressed with insulin in pancreatic islet ß-cells and has potent effects on gastric emptying and food intake. The effect of amylin on satiation has been postulated to involve AMY3 receptors (AMY3R) that are heteromers of the calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3). Understanding the molecular control of signaling through the AMY3R is thus important for peptide drug targeting of this receptor. We have previously used alanine scanning mutagenesis to study the contribution of the extracellular surface of the CTR to binding and signaling initiated by calcitonin (CT) and related peptides (Dal Maso, E., et al. (2019) The molecular control of calcitonin receptor signaling. ACS Pharmacol. Transl. Sci. 2, 31-51). That work revealed ligand- and pathway-specific effects of mutation, with extracellular loops (ECLs) 2 and 3 particularly important in the distinct propagation of signaling mediated by individual peptides. In the current study, we have used equivalent alanine scanning of ECL2 and ECL3 of the CTR in the context of coexpression with RAMP3 to form AMY3Rs, to examine functional affinity and efficacy of peptides in cAMP accumulation and extracellular signal-regulated kinase (ERK) phosphorylation (pERK). The effect of mutation was determined on representatives of the three major distinct classes of CT peptide, salmon CT (sCT), human CT (hCT), and porcine CT (pCT), as well as rat amylin (rAmy) or human α-CGRP (calcitonin gene-related peptide, hCGRP) whose potency is enhanced by RAMP interaction. We demonstrate that the dynamic nature of CTR ECL2 and ECL3 in propagation of signaling is fundamentally altered when complexed with RAMP3 to form the AMY3R, despite only having predicted direct interactions with ECL2. Moreover, the work shows that the role of these loops in receptor signaling is highly peptide dependent, illustrating that even subtle changes to peptide sequence may change signaling output downstream of the receptor.

4.
Biochem Pharmacol ; 150: 214-244, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29454620

RESUMEN

Class B peptide hormone GPCRs are targets for the treatment of major chronic disease. Peptide ligands of these receptors display biased agonism and this may provide future therapeutic advantage. Recent active structures of the calcitonin (CT) and glucagon-like peptide-1 (GLP-1) receptors reveal distinct engagement of peptides with extracellular loops (ECLs) 2 and 3, and mutagenesis of the GLP-1R has implicated these loops in dynamics of receptor activation. In the current study, we have mutated ECLs 2 and 3 of the human CT receptor (CTR), to interrogate receptor expression, peptide affinity and efficacy. Integration of these data with insights from the CTR and GLP-1R active structures, revealed marked diversity in mechanisms of peptide engagement and receptor activation between the CTR and GLP-1R. While the CTR ECL2 played a key role in conformational propagation linked to Gs/cAMP signalling this was mechanistically distinct from that of GLP-1R ECL2. Moreover, ECL3 was a hotspot for distinct ligand- and pathway-specific effects, and this has implications for the future design of biased agonists of class B GPCRs.


Asunto(s)
Líquido Extracelular/metabolismo , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/metabolismo , Secuencia de Aminoácidos , Línea Celular , Relación Dosis-Respuesta a Droga , Líquido Extracelular/efectos de los fármacos , Humanos , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Calcitonina/química , Receptores de Calcitonina/genética
5.
Biochem Pharmacol ; 148: 111-129, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29277692

RESUMEN

The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is a therapeutic target for the treatment of hypercalcaemia of malignancy, Paget's disease and osteoporosis. In primates, the CTR is subject to alternative splicing, with a unique, primate-specific splice variant being preferentially expressed in reproductive organs, lung and kidney. In addition, humans possess a common non-synonymous single-nucleotide polymorphism (SNP) encoding a proline/leucine substitution in the C-terminal tail. In low power studies, the leucine polymorphism has been associated with increased risk of osteoporosis in East Asian populations and, independently, with increased risk of kidney stone disease in a central Asian population. The CTR is pleiotropically coupled, though the relative physiological importance of these pathways is poorly understood. Using both COS-7 and HEK293 cells recombinantly expressing human CTR, we have characterized both splice variant and polymorphism dependent response to CTs from several species in key signalling pathways and competition binding assays. These data indicate that the naturally occurring changes to the intracellular face of CTR alter ligand affinity and signalling, in a pathway and agonist dependent manner. These results further support the potential for these primate-specific CTR variants to engender different physiological responses. In addition, we report that the CTR exhibits constitutive internalization, independent of splice variant and polymorphism and this profile is unaltered by peptide binding.


Asunto(s)
Receptores de Calcitonina/metabolismo , Transducción de Señal/fisiología , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Humanos , Polimorfismo Genético , Isoformas de Proteínas , Receptores de Calcitonina/genética
6.
Cell ; 167(3): 739-749.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720449

RESUMEN

G protein-coupled receptor (GPCR) signaling, mediated by hetero-trimeric G proteins, can be differentially controlled by agonists. At a molecular level, this is thought to occur principally via stabilization of distinct receptor conformations by individual ligands. These distinct conformations control subsequent recruitment of transducer and effector proteins. Here, we report that ligand efficacy at the calcitonin GPCR (CTR) is also correlated with ligand-dependent alterations to G protein conformation. We observe ligand-dependent differences in the sensitivity of the G protein ternary complex to disruption by GTP, due to conformational differences in the receptor-bound G protein hetero-trimer. This results in divergent agonist-dependent receptor-residency times for the hetero-trimeric G protein and different accumulation rates for downstream second messengers. This study demonstrates that factors influencing efficacy extend beyond receptor conformation(s) and expands understanding of the molecular basis for how G proteins control/influence efficacy. This has important implications for the mechanisms that underlie ligand-mediated biased agonism. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Unión al GTP/química , Guanosina Trifosfato/farmacología , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/química , Adenosina Difosfato/biosíntesis , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Ligandos , Conformación Proteica , Multimerización de Proteína , Receptores de Calcitonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...