Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217606

RESUMEN

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson's disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multidomain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common, disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for drug discovery. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 in cells and in in vitro. Importantly, nanobodies were identified that inhibit LRRK2 kinase activity while binding to a site that is topographically distinct from the active site and thus act through an allosteric inhibitory mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain nanobodies completely inhibit the LRRK2 kinase activity, we also identified nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type I kinase inhibitors, the studied kinase-inhibitory nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized nanobodies represent versatile tools to study the LRRK2 function and mechanism and can pave the way toward novel diagnostic and therapeutic strategies for PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Anticuerpos de Dominio Único , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Mapeo Epitopo , Células HEK293 , Humanos , Ratones , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Células RAW 264.7 , Proteínas de Unión al GTP rab/metabolismo
2.
Semin Cancer Biol ; 60: 96-106, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31454669

RESUMEN

The majority of cancer-associated deaths are related to secondary tumor formation. This multistep process involves the migration of cancer cells to anatomically distant organs. Metastasis formation relies on cancer cell dissemination and survival in the circulatory system, as well as adaptation to the new tissue notably through genetic and/or epigenetic alterations. A large number of proteins are clearly identified to play a role in the metastatic process but the structures and modes of action of these proteins are essentially unknown or poorly described. In this review, we detail the involvement of members of the transmembrane (TMEM) protein family in the formation of metastases or in the mechanisms leading to cancer cell dissemination such as migration and extra-cellular matrix remodelling. While the phenotype associated with TMEM over or down-expression is clear, the mechanisms by which these proteins allow cancer cell spreading remain, for most of them, unclear. In parallel, the 3D structures of these proteins are presented. Moreover, we proposed that TMEM proteins could be used as prognostic markers in different types of cancers and could represent potential targets for cancer treatment. A better understanding of this heterogeneous family of poorly characterized proteins thus opens perspectives for better cancer patient care.


Asunto(s)
Familia de Multigenes , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Biomarcadores , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Terapia Molecular Dirigida , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Pronóstico , Transducción de Señal , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/química
3.
Cell Rep ; 29(6): 1469-1481.e9, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693889

RESUMEN

Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.


Asunto(s)
Adenocarcinoma/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteína Quinasa CDC2/antagonistas & inhibidores , Neoplasias del Colon/metabolismo , Proteínas de Homeodominio/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/secundario , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Secuenciación de Inmunoprecipitación de Cromatina , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Proteínas de Homeodominio/genética , Humanos , Espectrometría de Masas , Ratones , Ratones Desnudos , FN-kappa B/metabolismo , ARN Interferente Pequeño , Transducción de Señal/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Trasplante Heterólogo
4.
Biochem Pharmacol ; 162: 224-236, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629941

RESUMEN

Hypoxia is one of the most important biological phenomena that influences cancer agressiveness and chemotherapy resistance. Cancer cells display dysregulated pathways notably resulting from oncogene expression. Tumors also show modifications in extracellular pH, extracellular matrix remodeling, neo-angiogenesis, hypoxia compared to normal tissues. Classically, the conventional anticancer therapies are efficient in cancer cells in normoxic conditions but under hypoxia, chemoresistance may occur. The addition of compounds that potentiate their activity in low oxygen environment could be a strategy to counteract this resistance. To identify new compounds active in hypoxia, we screened one hundred molecules with different chemical structures from an internal chemolibrary. Their potential ability to increase the activity of taxol and etoposide independently of their mechanism of action has been assayed. After a first step of selection, based on biological/pharmacological properties and chemical structure analysis, we identified three potential hits. Two hits are closely related amides/ureas and the third is a thiosemicarbazone. The compounds present no activity in cancer and normal cells when used alone but demonstrate chemosensitizing activity under hypoxia. Finally, by analyzing cell death, the indole thiosemicarbazone was shown to be able to significantly potentiate apoptosis induced by taxol and etoposide in two models of cancer cell lines. This new compound could lead to the development of an original series of chemosensitizers active under hypoxia.


Asunto(s)
Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Tiosemicarbazonas/administración & dosificación , Antineoplásicos/toxicidad , Apoptosis/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Dermatoglifia del ADN/métodos , Etopósido/administración & dosificación , Etopósido/toxicidad , Células Hep G2 , Humanos , Paclitaxel/administración & dosificación , Paclitaxel/toxicidad , Tiosemicarbazonas/toxicidad
5.
J Struct Biol ; 194(3): 357-67, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26993463

RESUMEN

DNA methylation is an important epigenetic modification involved in chromatin organization and gene expression. The function of DNA methylation depends on cell context and is correlated with histone modification patterns. In particular, trimethylation of Lys36 on histone H3 tail (H3K36me3) is associated with DNA methylation and elongation phase of transcription. PWWP domains of the de novo DNA methyltransferases DNMT3A and DNMT3B read this epigenetic mark to guide DNA methylation. Here we report the first crystal structure of the DNMT3B PWWP domain-H3K36me3 complex. Based on this structure, we propose a model of the DNMT3A PWWP domain-H3K36me3 complex and build a model of DNMT3A (PWWP-ADD-CD) in a nucleosomal context. The trimethylated side chain of Lys36 (H3K36me3) is inserted into an aromatic cage similar to the "Royal" superfamily domains known to bind methylated histones. A key interaction between trimethylated Lys36 and a conserved water molecule stabilized by Ser270 explains the lack of affinity of mutated DNMT3B (S270P) for the H3K36me3 epigenetic mark in the ICF (Immunodeficiency, Centromeric instability and Facial abnormalities) syndrome. The model of the DNMT3A-DNMT3L heterotetramer in complex with a dinucleosome highlights the mechanism for recognition of nucleosome by DNMT3s and explains the periodicity of de novo DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , Histonas/química , Nucleosomas/química , Dominios y Motivos de Interacción de Proteínas , Cristalografía por Rayos X , Metilación de ADN , ADN Metiltransferasa 3A , Humanos , Modelos Moleculares , Unión Proteica , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...