Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 85, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277573

RESUMEN

The gut microbiota of infants in low- to middle-income countries is underrepresented in microbiome research. This study explored the faecal microbiota composition and faecal cytokine profiles in a cohort of infants in a rural province of Cambodia and investigated the impact of sample storage conditions and infant environment on microbiota composition. Faecal samples collected at three time points from 32 infants were analysed for microbiota composition using 16S rRNA amplicon sequencing and concentrations of faecal cytokines. Faecal bacterial isolates were subjected to whole genome sequencing and genomic analysis. We compared the effects of two sample collection methods due to the challenges of faecal sample collection in a rural location. Storage of faecal samples in a DNA preservation solution preserved Bacteroides abundance. Microbiota analysis of preserved samples showed that Bifidobacterium was the most abundant genus with Bifidobacterium longum the most abundant species, with higher abundance in breast-fed infants. Most infants had detectable pathogenic taxa, with Shigella and Klebsiella more abundant in infants with recent diarrhoeal illness. Neither antibiotics nor infant growth were associated with gut microbiota composition. Genomic analysis of isolates showed gene clusters encoding the ability to digest human milk oligosaccharides in B. longum and B. breve isolates. Antibiotic-resistant genes were present in both potentially pathogenic species and in Bifidobacterium. Faecal concentrations of Interlukin-1alpha and vascular endothelial growth factor were higher in breast-fed infants. This study provides insights into an underrepresented population of rural Cambodian infants, showing pathogen exposure and breastfeeding impact gut microbiota composition and faecal immune profiles.


Asunto(s)
Bifidobacterium , Citocinas , Diarrea , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Población Rural , Humanos , Heces/microbiología , Lactante , Cambodia , Citocinas/metabolismo , ARN Ribosómico 16S/genética , Femenino , Masculino , Diarrea/microbiología , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Dieta , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Shigella/genética , Shigella/aislamiento & purificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Klebsiella/genética , Klebsiella/aislamiento & purificación , Lactancia Materna , ADN Bacteriano/genética , Secuenciación Completa del Genoma , Leche Humana/microbiología , Leche Humana/química
2.
J Mater Chem B ; 12(37): 9283-9288, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39171867

RESUMEN

Low molecular weight gels are formed via the self-assembly of small molecules into fibrous structures. In the case of hydrogels, these networks entrap large volumes of water, yielding soft materials. Such gels tend to have weak mechanical properties and a high permeability for cells, making them particularly appealing for regenerative medicine applications. Ureido-pyrimidinone (UPy) supramolecular gelators are self-assembling systems that have demonstrated excellent capabilities as biomaterials. Here, we combine UPy-gelators with another low molecular weight gelator, the functionalized dipeptide 2NapFF. We have successfully characterized these multicomponent systems on a molecular and bulk scale. The addition of 2NapFF to a crosslinked UPy hydrogel significantly increased hydrogel stiffness from 30 Pa to 1300 Pa. Small-angle X-ray scattering was used to probe the underlying structures of the systems and showed that the mixed UPy and 2NapFF systems resemble the scattering data produced by the pristine UPy systems. However, when a bifunctional UPy-crosslinker was added, the scattering was close to that of the 2NapFF only samples. The results suggest that the crosslinker significantly influences the assembly of the low molecular weight gelators. Finally, we analysed the biocompatibility of the systems using fibroblast cells and found that the cells tended to spread more effectively when the crosslinking species was incorporated. Our results emphasise the need for thorough characterisation at multiple length scales to finely control material properties, which is particularly important for developing novel biomaterials.


Asunto(s)
Hidrogeles , Pirimidinonas , Pirimidinonas/química , Ratones , Hidrogeles/química , Hidrogeles/síntesis química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Estructura Molecular , Urea/química , Técnicas de Cultivo de Célula , Fibroblastos/citología
3.
ACS Appl Mater Interfaces ; 16(33): 43374-43386, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39113638

RESUMEN

Orthopedic implant-related bacterial infections and resultant antibiotic-resistant biofilms hinder implant-tissue integration and failure. Biofilm quorum sensing (QS) communication determines the pathogen colonization success. However, it remains unclear how implant modifications and host cells are influenced by, or influence, QS. High aspect ratio nanotopographies have shown to reduce biofilm formation of Pseudomonas aeruginosa, a sepsis causing pathogen with well-defined QS molecules. Producing such nanotopographies in relevant orthopedic materials (i.e., titanium) allows for probing QS using mass spectrometry-based metabolomics. However, nanotopographies can reduce host cell adhesion and regeneration. Therefore, we developed a polymer (poly(ethyl acrylate), PEA) coating that organizes extracellular matrix proteins, promoting bioactivity to host cells such as human mesenchymal stromal cells (hMSCs), maintaining biofilm reduction. This allowed us to investigate how hMSCs, after winning the race for the surface against pathogenic cells, interact with the biofilm. Our approach revealed that nanotopographies reduced major virulence pathways, such as LasR. The enhanced hMSCs support provided by the coated nanotopographies was shown to suppress virulence pathways and biofilm formation. Finally, we selected bioactive metabolites and demonstrated that these could be used as adjuncts to the nanostructured surfaces to reduce biofilm formation and enhance hMSC activity. These surfaces make excellent models to study hMSC-pathogen interactions and could be envisaged for use in novel orthopedic implants.


Asunto(s)
Biopelículas , Técnicas de Cocultivo , Células Madre Mesenquimatosas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Percepción de Quorum/efectos de los fármacos , Humanos , Biopelículas/efectos de los fármacos , Interacciones Huésped-Patógeno , Nanoestructuras/química
4.
Adv Healthc Mater ; : e2303777, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101628

RESUMEN

The blood-brain barrier (BBB) tightly regulates substance transport between the bloodstream and the brain. Models for the study of the physiological processes affecting the BBB, as well as predicting the permeability of therapeutic substances for neurological and neurovascular pathologies, are highly desirable. Existing models, such as Transwell utilizing-models, do not mimic the extracellular environment of the BBB with their stiff, semipermeable, non-biodegradable membranes. To help overcome this, we engineered electrospun membranes from poly L-lactic acid in combination with a nanometric coating of poly(ethyl acrylate) (PEA) that drives fibrillogenesis of fibronectin, facilitating the synergistic presentation of both growth factors and integrin binding sites. Compared to commercial semi-porous membranes, these membranes significantly improve the expression of BBB-related proteins in brain endothelial cells. PEA-coated membranes in combination with different growth factors and extracellular protein coatings reveal nerve growth factor (NGF) and fibroblast growth factor (FGF-2) caused formation of better barriers in vitro. This BBB model offers a robust platform for studying key biochemical factors influencing barrier formation that marries the simplicity of the Transwell model with the highly tunable electrospun PEA-fibronectin membranes. This enables the generation of high-throughput drug permeability models without the need of complicated co-culture conditions.

5.
Nat Commun ; 15(1): 5791, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987295

RESUMEN

Long-term reconstituting haematopoietic stem cells (LT-HSCs) are used to treat blood disorders via stem cell transplantation. The very low abundance of LT-HSCs and their rapid differentiation during in vitro culture hinders their clinical utility. Previous developments using stromal feeder layers, defined media cocktails, and bioengineering have enabled HSC expansion in culture, but of mostly short-term HSCs and progenitor populations at the expense of naive LT-HSCs. Here, we report the creation of a bioengineered LT-HSC maintenance niche that recreates physiological extracellular matrix organisation, using soft collagen type-I hydrogels to drive nestin expression in perivascular stromal cells (PerSCs). We demonstrate that nestin, which is expressed by HSC-supportive bone marrow stromal cells, is cytoprotective and, via regulation of metabolism, is important for HIF-1α expression in PerSCs. When CD34+ve HSCs were added to the bioengineered niches comprising nestin/HIF-1α expressing PerSCs, LT-HSC numbers were maintained with normal clonal and in vivo reconstitution potential, without media supplementation. We provide proof-of-concept that our bioengineered niches can support the survival of CRISPR edited HSCs. Successful editing of LT-HSCs ex vivo can have potential impact on the treatment of blood disorders.


Asunto(s)
Matriz Extracelular , Células Madre Hematopoyéticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Nestina , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Nestina/metabolismo , Nestina/genética , Matriz Extracelular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Nicho de Células Madre , Hidrogeles/química , Bioingeniería/métodos , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Trasplante de Células Madre Hematopoyéticas , Antígenos CD34/metabolismo , Colágeno Tipo I/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
6.
ACS Appl Mater Interfaces ; 16(26): 32930-32944, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888932

RESUMEN

Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.


Asunto(s)
Matriz Extracelular , Fibronectinas , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibronectinas/química , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Nanoestructuras/química
7.
ACS Nano ; 18(27): 17630-17641, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38924391

RESUMEN

Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI). In vitro nanoscale vibration (1 kHz, 30 or 90 nm amplitude) has been shown to drive differentiation of mesenchymal stem cells toward osteoblast-like phenotypes, enhancing osteogenesis and inhibiting osteoclastogenesis simultaneously. Here, we develop and characterize a wearable device designed to deliver and monitor continuous nanoamplitude vibration to the hindlimb long bones of rats with complete SCI. We investigate whether a clinically feasible dose of nanovibration (two 2 h/day, 5 days/week for 6 weeks) is effective at reversing the established SCI-induced osteoporosis. Laser interferometry and finite element analysis confirmed transmission of nanovibration into the bone, and microcomputed tomography and serum bone formation and resorption markers assessed effectiveness. The intervention did not reverse SCI-induced osteoporosis. However, serum analysis indicated an elevated concentration of the bone formation marker procollagen type 1 N-terminal propeptide (P1NP) in rats receiving 40 nm amplitude nanovibration, suggesting increased synthesis of type 1 collagen, the major organic component of bone. Therefore, enhanced doses of nanovibrational stimulus may yet prove beneficial in attenuating/reversing osteoporosis, particularly in less severe forms of osteoporosis.


Asunto(s)
Osteoporosis , Traumatismos de la Médula Espinal , Vibración , Animales , Ratas , Osteoporosis/patología , Osteoporosis/prevención & control , Ratas Sprague-Dawley , Microtomografía por Rayos X , Osteogénesis/efectos de los fármacos , Femenino , Dispositivos Electrónicos Vestibles , Nanotecnología
8.
Exp Hematol ; 135: 104232, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729553

RESUMEN

The bone marrow (BM) niche is a complex microenvironment that provides the signals required for regulation of hematopoietic stem cells (HSCs) and the process of hematopoiesis they are responsible for. Bioengineered models of the BM niche incorporate various elements of the in vivo BM microenvironment, including cellular components, soluble factors, a three-dimensional environment, mechanical stimulation of included cells, and perfusion. Recent advances in the bioengineering field have resulted in a spate of new models that shed light on BM function and are approaching precise imitation of the BM niche. These models promise to improve our understanding of the in vivo microenvironment in health and disease. They also aim to serve as platforms for HSC manipulation or as preclinical models for screening novel therapies for BM-associated disorders and diseases.


Asunto(s)
Médula Ósea , Hematopoyesis , Células Madre Hematopoyéticas , Nicho de Células Madre , Humanos , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Modelos Biológicos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
9.
Biomater Adv ; 160: 213861, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663159

RESUMEN

Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.


Asunto(s)
Mecanotransducción Celular , Osteogénesis , Osteogénesis/fisiología , Humanos , Titanio/química , Animales , Diferenciación Celular , Propiedades de Superficie , Materiales Biocompatibles/química , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Matriz Extracelular/química
10.
Acta Biomater ; 180: 154-170, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38621600

RESUMEN

Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.


Asunto(s)
Técnicas de Cocultivo , Galio , Células Madre Mesenquimatosas , Osteogénesis , Pseudomonas aeruginosa , Plata , Titanio , Titanio/química , Titanio/farmacología , Plata/farmacología , Plata/química , Humanos , Galio/farmacología , Galio/química , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Osteogénesis/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Resorción Ósea/patología , Propiedades de Superficie , Células RAW 264.7 , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Bacterianas/prevención & control
11.
Bioessays ; 46(5): e2300223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522027

RESUMEN

Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.


Asunto(s)
Envejecimiento , Matriz Extracelular , Animales , Humanos , Matriz Extracelular/metabolismo , Reino Unido
12.
Adv Mater ; 36(23): e2310789, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38253339

RESUMEN

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-ß1) is bound. rLTBP1 facilitates the interaction of LAP with integrin ß1 and the subsequent mechanically driven release of TGF-ß1 to stimulate canonical TGF-ß1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.


Asunto(s)
Osteogénesis , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Fibronectinas/química , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/química , Regeneración Ósea , Propiedades de Superficie , Integrinas/metabolismo , Unión Proteica , Integrina beta1/metabolismo , Transducción de Señal
13.
Biomater Adv ; 158: 213766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232578

RESUMEN

Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.


Asunto(s)
Adhesión Bacteriana , Titanio , Titanio/farmacología , Técnicas de Cocultivo , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220221, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37661739

RESUMEN

The role of the gut microbiota in determining body fatness has been a prominent area of research and has received significant public attention. Based largely on animal studies, recent attempts to translate these findings into interventions in humans have not been successful. This review will outline the key mouse research that initiated this area of study, examine whether those results warranted the initial enthusiasm and progress into human studies, and examine whether later follow-up research supported earlier conclusions. It will look at whether the absence of a gut microbiota protects germ-free mice from obesity, whether microbiota can transfer obesity into germ-free mice, the evidence for the role of immune system activation as a causal mechanism linking the gut microbiota to body weight, and consider the evidence for effects of individual bacterial species. Finally, it will examine the outcomes of randomized controlled trials of microbiota transfer in human participants that have not shown effects on body weight. With a more critical reading, early studies did not show as large an effect as first appeared and later research, including human trials, has failed to support a role of the gut microbiota in shaping body weight. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Obesidad/etiología , Peso Corporal , Tejido Adiposo
15.
Artículo en Inglés | MEDLINE | ID: mdl-37718477

RESUMEN

There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.

16.
ACS Appl Bio Mater ; 6(10): 4290-4303, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37721636

RESUMEN

Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.


Asunto(s)
Carnosina , Nanofibras , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carnosina/farmacología , Nanofibras/química , Staphylococcus aureus , Biomimética , Células Endoteliales , Cicatrización de Heridas , Nanopartículas/química , Antibacterianos/química
17.
Gastro Hep Adv ; 2(5): 666-675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469521

RESUMEN

Background and Aims: Necrotizing enterocolitis (NEC) is a life-threatening disease and the most common gastrointestinal emergency in premature infants. Accurate early diagnosis is challenging. Modified Bell's staging is routinely used to guide diagnosis, but early diagnostic signs are nonspecific, potentially leading to unobserved disease progression, which is problematic given the often rapid deterioration observed. We investigated fecal cytokine levels, coupled with gut microbiota profiles, as a noninvasive method to discover specific NEC-associated signatures that can be applied as potential diagnostic markers. Methods: Premature babies born below 32 weeks of gestation were admitted to the 2-site neonatal intensive care unit (NICU) of Imperial College hospitals (St. Mary's or Queen Charlotte's & Chelsea) between January 2011 and December 2012. During the NICU stay, expert neonatologists grouped individuals by modified Bell's staging (healthy, NEC1, NEC2/3) and fecal samples from diapers were collected consecutively. Microbiota profiles were assessed by 16S rRNA gene amplicon sequencing and cytokine concentrations were measured by V-Plex multiplex assays. Results: Early evaluation of microbiota profiles revealed only minor differences. However, at later time points, significant changes in microbiota composition were observed for Bacillota (adj. P = .0396), with Enterococcus being the least abundant in Bell stage 2/3 NEC. Evaluation of fecal cytokine levels revealed significantly higher concentrations of IL-1α (P = .045), IL-5 (P = .0074), and IL-10 (P = .032) in Bell stage 1 NEC compared to healthy individuals. Conclusion: Differences in certain fecal cytokine profiles in patients with NEC indicate their potential use as diagnostic biomarkers to facilitate earlier diagnosis. Additionally, associations between microbial and cytokine profiles contribute to improving knowledge about NEC pathogenesis.

18.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428148

RESUMEN

The human skin microbiome represents a variety of complex microbial ecosystems that play a key role in host health. Molecular methods to study these communities have been developed but have been largely limited to low-throughput quantification and short amplicon-based sequencing, providing limited functional information about the communities present. Shotgun metagenomic sequencing has emerged as a preferred method for microbiome studies as it provides more comprehensive information about the species/strains present in a niche and the genes they encode. However, the relatively low bacterial biomass of skin, in comparison to other areas such as the gut microbiome, makes obtaining sufficient DNA for shotgun metagenomic sequencing challenging. Here we describe an optimised high-throughput method for extraction of high molecular weight DNA suitable for shotgun metagenomic sequencing. We validated the performance of the extraction method, and analysis pipeline on skin swabs collected from both adults and babies. The pipeline effectively characterised the bacterial skin microbiota with a cost and throughput suitable for larger longitudinal sets of samples. Application of this method will allow greater insights into community compositions and functional capabilities of the skin microbiome.


Asunto(s)
Metagenómica , Microbiota , Adulto , Humanos , ADN Bacteriano/genética , Metagenómica/métodos , Peso Molecular , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética , ADN
20.
Mater Today Bio ; 20: 100641, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37179535

RESUMEN

Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...