Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39301620

RESUMEN

AIMS: Anxiety disorders are prevalent and anxiety symptoms (ANX) co-occur with many psychiatric disorders. We aimed to identify genomic loci associated with ANX, characterize its genetic architecture, and genetic overlap with psychiatric disorders. METHODS: We included a genome-wide association study of ANX (meta-analysis of UK Biobank and Million Veterans Program, n = 301,732), schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), and validated the findings in the Norwegian Mother, Father, and Child Cohort (n = 95,841). We employed the bivariate causal mixture model and local analysis of covariant association to characterize the genetic architecture including overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of loci associated with anxiety and shared with psychiatric disorders. RESULTS: Anxiety was polygenic with 12.9k genetic variants and overlapped extensively with psychiatric disorders (4.1k-11.4k variants) with predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 119 novel loci for anxiety by conditioning on the psychiatric disorders, and loci shared between anxiety and MD n = 47 $$ \left(n=47\right) $$ , BIP n = 33 $$ \left(n=33\right) $$ , SCZ n = 71 $$ \left(n=71\right) $$ , ADHD n = 20 $$ \left(n=20\right) $$ , and ASD n = 5 $$ \left(n=5\right) $$ . Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways including cell adhesion and neurofibrillary tangle compared with genes annotated to the shared loci. CONCLUSIONS: Anxiety is highly polygenic phenotype with extensive genetic overlap with psychiatric disorders, and we identified novel loci for anxiety implicating new molecular pathways. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified molecular underpinnings may lead to potential drug targets.

2.
Neurooncol Adv ; 6(1): vdae140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290874

RESUMEN

Background: Evaluating longitudinal changes in gliomas is a time-intensive process with significant interrater variability. Automated segmentation could reduce interrater variability and increase workflow efficiency for assessment of treatment response. We sought to evaluate whether neural networks would be comparable to expert assessment of pre- and posttreatment diffuse gliomas tissue subregions including resection cavities. Methods: A retrospective cohort of 647 MRIs of patients with diffuse gliomas (average 55.1 years; 29%/36%/34% female/male/unknown; 396 pretreatment and 251 posttreatment, median 237 days post-surgery) from 7 publicly available repositories in The Cancer Imaging Archive were split into training (536) and test/generalization (111) samples. T1, T1-post-contrast, T2, and FLAIR images were used as inputs into a 3D nnU-Net to predict 3 tumor subregions and resection cavities. We evaluated the performance of networks trained on pretreatment training cases (Pre-Rx network), posttreatment training cases (Post-Rx network), and both pre- and posttreatment cases (Combined networks). Results: Segmentation performance was as good as or better than interrater reliability with median dice scores for main tumor subregions ranging from 0.82 to 0.94 and strong correlations between manually segmented and predicted total lesion volumes (0.94 < R 2 values < 0.98). The Combined network performed similarly to the Pre-Rx network on pretreatment cases and the Post-Rx network on posttreatment cases with fewer false positive resection cavities (7% vs 59%). Conclusions: Neural networks that accurately segment pre- and posttreatment diffuse gliomas have the potential to improve response assessment in clinical trials and reduce provider burden and errors in measurement.

3.
J Magn Reson Imaging ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291552

RESUMEN

BACKGROUND: Breast cancer screening with dynamic contrast-enhanced MRI (DCE-MRI) is recommended for high-risk women but has limitations, including variable specificity and difficulty in distinguishing cancerous (CL) and high-risk benign lesions (HRBL) from average-risk benign lesions (ARBL). Complementary non-invasive imaging techniques would be useful to improve specificity. PURPOSE: To evaluate the performance of a previously-developed breast-specific diffusion-weighted MRI (DW-MRI) model (BS-RSI3C) to improve discrimination between CL, HRBL, and ARBL in an enriched screening population. STUDY TYPE: Prospective. SUBJECTS: Exactly 187 women, either with mammography screening recommending additional imaging (N = 49) or high-risk individuals undergoing routine breast MRI (N = 138), before the biopsy. FIELD STRENGTH/SEQUENCE: Multishell DW-MRI echo planar imaging sequence with a reduced field of view at 3.0 T. ASSESSMENT: A total of 72 women had at least one biopsied lesion, with 89 lesions categorized into ARBL, HRBL, CL, and combined CLs and HRBLs (CHRLs). DW-MRI data were processed to produce apparent diffusion coefficient (ADC) maps, and estimate signal contributions (C1, C2, and C3-restricted, hindered, and free diffusion, respectively) from the BS-RSI3C model. Lesion regions of interest (ROIs) were delineated on DW images based on suspicious DCE-MRI findings by two radiologists; control ROIs were drawn in the contralateral breast. STATISTICAL TESTS: One-way ANOVA and two-sided t-tests were used to assess differences in signal contributions and ADC values among groups. P-values were adjusted using the Bonferroni method for multiple testing, P = 0.05 was used for the significance level. Receiver operating characteristics (ROC) curves and intra-class correlations (ICC) were also evaluated. RESULTS: C1, √C1C2, and log C 1 C 2 C 3 $$ \log \left(\frac{{\mathrm{C}}_1{\mathrm{C}}_2}{{\mathrm{C}}_3}\right) $$ were significantly different in HRBLs compared with ARBLs (P-values < 0.05). The log C 1 C 2 C 3 $$ \log \left(\frac{{\mathrm{C}}_1{\mathrm{C}}_2}{{\mathrm{C}}_3}\right) $$ had the highest AUC (0.821) in differentiating CHRLs from ARBLs, performing better than ADC (0.696), especially in non-mass enhancement (0.776 vs. 0.517). DATA CONCLUSION: This study demonstrated the BS-RSI3C could differentiate HRBLs from ARBLs in a screening population, and separate CHRLs from ARBLs better than ADC. TECHNICAL EFFICACY STAGE: 2.

4.
Radiol Artif Intell ; 6(5): e230489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39166970

RESUMEN

Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans in patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRI scans in 1297 patients with glioblastoma, including an internal set of 243 MRI scans (January 2010 to June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists on the basis of imaging, clinical history, and pathologic findings. Multimodal MRI data with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in distinguishing recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± 13 [SD]; 116 male, 62 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610, and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR, 0.53-0.89), and the AUC for detecting residual or recurrent tumor was 0.84 (95% CI: 0.79, 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04 per milliliter; P < .001) and PFS (HR = 1.04 per milliliter; P < .001) after adjustment for age, sex, and gross total resection (GTR) status. In the external test sets, estimated cellular tumor volume was significantly associated with OS (HR = 1.01 per milliliter; P < .001) after adjustment for age, sex, and GTR status. Conclusion A DL model incorporating advanced imaging could accurately segment enhancing and nonenhancing cellular tumor, distinguish recurrent or residual tumor from posttreatment changes, and predict OS and PFS in patients with glioblastoma. Keywords: Segmentation, Glioblastoma, Multishell Diffusion MRI Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Adulto , Anciano , Interpretación de Imagen Asistida por Computador/métodos
5.
Magn Reson Imaging ; 113: 110222, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39181479

RESUMEN

PURPOSE: MRI is commonly used to aid breast cancer diagnosis and treatment evaluation. For patients with breast cancer, neoadjuvant chemotherapy aims to reduce the tumor size and extent of surgery necessary. The current clinical standard to measure breast tumor response on MRI uses the longest tumor diameter. Radiologists also account for other tissue properties including tumor contrast or pharmacokinetics in their assessment. Accurate longitudinal image registration of breast tissue is critical to properly compare response to treatment at different timepoints. METHODS: In this study, a deformable Fast Longitudinal Image Registration (FLIRE) algorithm was optimized for breast tissue. FLIRE was then compared to the publicly available software packages with high accuracy (DRAMMS) and fast runtime (Elastix). Patients included in the study received longitudinal T1-weighted MRI without fat saturation at two to six timepoints as part of asymptomatic screening (n = 27) or throughout neoadjuvant chemotherapy treatment (n = 32). T1-weighted images were registered to the first timepoint with each algorithm. RESULTS: Alignment and runtime performance were compared using two-way repeated measure ANOVAs (P < 0.05). Across all patients, Pearson's correlation coefficient across the entire image volume was slightly higher with statistical significance and had less variance for FLIRE (0.98 ± 0.01 stdev) compared to DRAMMS (0.97 ± 0.03 stdev) and Elastix (0.95 ± 0.03 stdev). Additionally, FLIRE runtime (10.0 mins) was 9.0 times faster than DRAMMS (89.6 mins) and 1.5 times faster than Elastix (14.5 mins) on a Linux workstation. CONCLUSION: FLIRE demonstrates promise for time-sensitive clinical applications due to its accuracy, robustness across patients and timepoints, and speed.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Mama , Imagen por Resonancia Magnética , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Persona de Mediana Edad , Estudios Longitudinales , Terapia Neoadyuvante , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Anciano , Programas Informáticos
6.
PLoS Genet ; 20(8): e1011372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146375

RESUMEN

Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.


Asunto(s)
Algoritmos , Teorema de Bayes , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , Modelos Genéticos , Sitios de Carácter Cuantitativo
7.
Proc Natl Acad Sci U S A ; 121(31): e2403212121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042688

RESUMEN

Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.


Asunto(s)
Encéfalo , Caracteres Sexuales , Humanos , Femenino , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Salud Mental , Adulto Joven , Imagen de Difusión por Resonancia Magnética , Adolescente , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Tálamo/diagnóstico por imagen , Núcleo Accumbens/diagnóstico por imagen , Depresión/diagnóstico por imagen , Depresión/patología , Ansiedad/diagnóstico por imagen
8.
Cancer Imaging ; 24(1): 89, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972972

RESUMEN

BACKGROUND: High b-value diffusion-weighted images (DWI) are used for detection of clinically significant prostate cancer (csPCa). This study qualitatively and quantitatively compares synthesized DWI (sDWI) to acquired (aDWI) for detection of csPCa. METHODS: One hundred fifty-one consecutive patients who underwent prostate MRI and biopsy were included in the study. Axial DWI with b = 0, 500, 1000, and 2000 s/mm2 using a 3T clinical scanner using a 32-channel phased-array body coil were acquired. We retrospectively synthesized DWI for b = 2000 s/mm2 via extrapolation based on mono-exponential decay, using b = 0 and b = 500 s/mm2 (sDWI500) and b = 0, b = 500 s/mm2, and b = 1000 s/mm2 (sDWI1000). Differences in signal intensity between sDWI and aDWI were evaluated within different regions of interest (prostate alone, prostate plus 5 mm, 30 mm and 70 mm margin and full field of view). The maximum DWI value within each ROI was evaluated for prediction of csPCa. Classification accuracy was compared to Restriction Spectrum Imaging restriction score (RSIrs), a previously validated biomarker based on multi-exponential DWI. Discrimination of csPCa was evaluated via area under the receiver operating characteristic curve (AUC). RESULTS: Within the prostate, mean ± standard deviation of percent mean differences between sDWI and aDWI signal were -46 ± 35% for sDWI1000 and -67 ± 24% for sDWI500. AUC for aDWI, sDWI500, sDWI1000, and RSIrs within the prostate 0.62[95% confidence interval: 0.53, 0.71], 0.63[0.54, 0.72], 0.65[0.56, 0.73] and 0.78[0.71, 0.86], respectively. CONCLUSION: sDWI is qualitatively comparable to aDWI within the prostate. However, hyperintense artifacts are introduced with sDWI in the surrounding pelvic tissue that interfere with quantitative cancer detection and might mask metastases. In the prostate, RSIrs yields superior quantitative csPCa detection than sDWI or aDWI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Imagen de Difusión por Resonancia Magnética/métodos , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Anciano de 80 o más Años , Próstata/diagnóstico por imagen , Próstata/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38902353

RESUMEN

Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.

10.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38880786

RESUMEN

Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100 subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many research programs and grants.


Asunto(s)
Encéfalo , Cognición , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Masculino , Femenino , Cognición/fisiología , Neuroimagen/métodos , Memoria a Corto Plazo/fisiología , Niño , Desarrollo del Adolescente/fisiología , Mapeo Encefálico/métodos
11.
Nat Genet ; 56(6): 1310-1318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831010

RESUMEN

While genome-wide association studies are increasingly successful in discovering genomic loci associated with complex human traits and disorders, the biological interpretation of these findings remains challenging. Here we developed the GSA-MiXeR analytical tool for gene set analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage disequilibrium across variants and allowing the quantification of partitioned heritability and fold enrichment for small gene sets. We validated the method using extensive simulations and sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including schizophrenia, GSA-MiXeR prioritizes gene sets with greater biological specificity compared to standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic signaling for schizophrenia. Such biologically relevant gene sets, often with fewer than ten genes, are more likely to provide insights into the pathobiology of complex diseases and highlight potential drug targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo/métodos , Esquizofrenia/genética , Herencia Multifactorial/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Mapeo Cromosómico/métodos , Simulación por Computador , Carácter Cuantitativo Heredable
12.
Artículo en Inglés | MEDLINE | ID: mdl-38925224

RESUMEN

PURPOSE: The focal radiation therapy (RT) boost technique was shown in a phase III randomized controlled trial (RCT) to improve prostate cancer outcomes without increasing toxicity. This technique relies on the accurate delineation of prostate tumors on MRI. A recent prospective study evaluated radiation oncologists' accuracy when asked to delineate prostate tumors on MRI and demonstrated high variability in tumor contours. We sought to evaluate the impact of contour variability and inaccuracy on predicted clinical outcomes. We hypothesized that radiation oncologists' contour inaccuracies would yield meaningfully worse clinical outcomes. METHODS AND MATERIALS: Forty-five radiation oncologists and 2 expert radiologists contoured prostate tumors on 30 patient cases. Of these cases, those with CT simulation or diagnostic CT available were selected for analysis. A knowledge-based planning model was developed to generate focal RT boost plans for each contour per the RCT protocol. The probability of biochemical failure (BF) was determined using a model from the RCT. The primary metric evaluated was delta BF (DBF = Participant BF - Expert BF). An absolute increase in BF ≥5% was considered clinically meaningful. RESULTS: Eight patient cases and 394 target volumes for focal RT boost planning were included in this analysis. In general, participant plans were associated with worse predicted clinical outcomes compared to the expert plan, with an average absolute increase in BF of 4.3%. Of participant plans, 37% were noted to have an absolute increase in BF of 5% or more. CONCLUSIONS: Radiation oncologists' attempts to contour tumor targets for focal RT boost are frequently inaccurate enough to yield meaningfully inferior clinical outcomes for patients.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38878863

RESUMEN

BACKGROUND: Early identification of Alzheimer's disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification. METHODS: In 194 adults, we calculated magnetic resonance imaging-derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography-derived maps of AD pathology deposition (amyloid-ß, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps. RESULTS: Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = -0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (ß = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05). CONCLUSIONS: Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.

14.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850213

RESUMEN

The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical development and maturation.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Masculino , Femenino , Adolescente , Estudios Longitudinales , Interacción Gen-Ambiente , Niño , Ambiente
15.
Neurol Genet ; 10(3): e200143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817246

RESUMEN

Background and Objectives: Epilepsies are associated with differences in cortical thickness (TH) and surface area (SA). However, the mechanisms underlying these relationships remain elusive. We investigated the extent to which these phenotypes share genetic influences. Methods: We analyzed genome-wide association study data on common epilepsies (n = 69,995) and TH and SA (n = 32,877) using Gaussian mixture modeling MiXeR and conjunctional false discovery rate (conjFDR) analysis to quantify their shared genetic architecture and identify overlapping loci. We biologically interrogated the loci using a variety of resources and validated in independent samples. Results: The epilepsies (2.4 k-2.9 k variants) were more polygenic than both SA (1.8 k variants) and TH (1.3 k variants). Despite absent genome-wide genetic correlations, there was a substantial genetic overlap between SA and genetic generalized epilepsy (GGE) (1.1 k), all epilepsies (1.1 k), and juvenile myoclonic epilepsy (JME) (0.7 k), as well as between TH and GGE (0.8 k), all epilepsies (0.7 k), and JME (0.8 k), estimated with MiXeR. Furthermore, conjFDR analysis identified 15 GGE loci jointly associated with SA and 15 with TH, 3 loci shared between SA and childhood absence epilepsy, and 6 loci overlapping between SA and JME. 23 loci were novel for epilepsies and 11 for cortical morphology. We observed a high degree of sign concordance in the independent samples. Discussion: Our findings show extensive genetic overlap between generalized epilepsies and cortical morphology, indicating a complex genetic relationship with mixed-effect directions. The results suggest that shared genetic influences may contribute to cortical abnormalities in epilepsies.

16.
Nat Genet ; 56(5): 792-808, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637617

RESUMEN

Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neurobiología , Polimorfismo de Nucleótido Simple , Trastornos por Estrés Postraumático/genética , Población Blanca/genética , Blanco , Negro o Afroamericano , Indio Americano o Nativo de Alaska
17.
Alzheimers Res Ther ; 16(1): 90, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664843

RESUMEN

BACKGROUND: Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations. METHODS: We examined these associations in a large community-dwelling sample of early old age men (N = 969, mean age = 67.57 years, range = 61-73 years), who are either cognitively unimpaired (CU) or with mild cognitive impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter. RESULTS: After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it was not detected in CU individuals. CONCLUSIONS: These results suggest that in early old age men without dementia, plasma NfL does not appear to be sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed findings in the literature.


Asunto(s)
Biomarcadores , Cognición , Disfunción Cognitiva , Vida Independiente , Proteínas de Neurofilamentos , Neuroimagen , Pruebas Neuropsicológicas , Humanos , Masculino , Proteínas de Neurofilamentos/sangre , Anciano , Persona de Mediana Edad , Estudios Transversales , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Neuroimagen/métodos , Cognición/fisiología , Biomarcadores/sangre , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Envejecimiento/sangre
18.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585944

RESUMEN

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

19.
medRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464132

RESUMEN

Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.

20.
Hum Brain Mapp ; 45(2): e26579, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339910

RESUMEN

The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME; however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible. We validate FEMA with extensive simulations, showing that the estimates of the fixed effects are equivalent to standard maximum likelihood estimates but obtained with orders of magnitude improvement in computational speed. We demonstrate the applicability of FEMA by studying the cross-sectional and longitudinal effects of age on region-of-interest level and vertex-wise cortical thickness, as well as connectome-wide functional connectivity values derived from resting state functional MRI, using longitudinal imaging data from the Adolescent Brain Cognitive DevelopmentSM Study release 4.0. Our analyses reveal distinct spatial patterns for the annualized changes in vertex-wise cortical thickness and connectome-wide connectivity values in early adolescence, highlighting a critical time of brain maturation. The simulations and application to real data show that FEMA enables advanced investigation of the relationships between large numbers of neuroimaging metrics and variables of interest while considering complex study designs, including repeated measures and family structures, in a fast and efficient manner. The source code for FEMA is available via: https://github.com/cmig-research-group/cmig_tools/.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Transversales , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Conectoma/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...