Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 100(3): 1009-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21280052

RESUMEN

Protein solubility is a critical attribute in monoclonal antibody (mAb) formulation development as insolubility issues can negatively impact drug stability, activity, bioavailability, and immunogenicity. A high-throughput adaptation of an experimental method previously established in the literature to determine apparent protein solubility is described, where polyethylene glycol (PEG) is used to reduce protein solubility in a quantitatively definable manner. Utilizing an automated, high-throughput system, an immunoglobulin G (IgG)1 mAb in a variety of buffer conditions was exposed to increasing concentrations of PEG and the amount of protein remaining in solution was determined. Comparisons of PEG(midpt) values (the weight% PEG in solution required to decrease the protein concentration by 50%) to extrapolated values of apparent protein solubility (in the absence of PEG) were performed. The determination of PEG(midpt) by using sigmoidal curve fitting of the entire data set was shown to be the most precise and reproducible approach for use during high-throughput screening experiments. The high-throughput PEG methodology was then applied to the screening of different formulations to optimize relative protein solubility profiles (weight% PEG vs. protein concentration and their corresponding PEG(midpt) values) in terms of solution pH and buffer ions for both human and chimeric IgG1 mAbs. Other comparisons included evaluating relative solubility profiles of an IgG1 mAb produced from different cell lines (Chinese hamster ovary vs. murine) as well as for different IgG1 mAbs (produced from the same cell line) in a series of formulation buffers. Based on these comparisons, it was concluded that rapid, high-throughput determinations of relative protein solubility profiles can be used as a practical, experimental tool to compare mAb preparations and to rank order buffer and pH conditions during formulation development.


Asunto(s)
Anticuerpos Monoclonales/química , Portadores de Fármacos/química , Ensayos Analíticos de Alto Rendimiento , Inmunoglobulina G/química , Polietilenglicoles/química , Proteínas/química , Algoritmos , Animales , Tampones (Química) , Células CHO , Precipitación Química , Cricetinae , Cricetulus , Composición de Medicamentos , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Método de Montecarlo , Reproducibilidad de los Resultados , Solubilidad
2.
Biologicals ; 39(1): 9-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20888784

RESUMEN

To assess the impact of manufacturing changes on antibody structure and function during the course of product development, three comparability studies were performed for each of two different IgG1 monoclonal antibody product candidates. Comparability study #1 evaluated the effect of changing the cell line and bulk drug substance manufacturing process for cell culture and purification. Results indicated that these process changes led to differences in sialylation of N-glycans and/or C-terminal lysine levels. Comparability study #2 results confirmed that scale-up of the bulk process and transfer to the commercial site, combined with changing from a lyophilized to a liquid dosage form, did not impact the structural or functional integrity of the antibodies. Comparability study #3 examined possible differences arising when the liquid formulation filled into pre-filled syringes and vials. Results indicated nearly identical molecular structure, biological activity, and degradation profiles except for a small yet statistically significant increase in the levels of subvisible particles in pre-filled syringes. These results from comparability studies with two different monoclonal antibodies are discussed with respect to the timing of the manufacturing changes and overall comparability strategies to assure safety and efficacy during development.


Asunto(s)
Anticuerpos Monoclonales/análisis , Industria Farmacéutica/normas , Inmunoglobulina G/inmunología , Tecnología Farmacéutica/normas , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Línea Celular , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Industria Farmacéutica/métodos , Electroforesis en Gel de Poliacrilamida , Humanos , Células K562 , Unión Proteica , Receptores de IgG/metabolismo , Tecnología Farmacéutica/métodos
3.
MAbs ; 2(4): 428-39, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20519961

RESUMEN

We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018).  The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry.  In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration.  In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Artritis/inmunología , Cartílago/efectos de los fármacos , Inmunoglobulina G/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Adalimumab , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales Humanizados/farmacología , Afinidad de Anticuerpos , Artritis/inducido químicamente , Cartílago/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Selectina E/genética , Selectina E/metabolismo , Etanercept , Regulación de la Expresión Génica/efectos de los fármacos , Hibridomas , Inmunoglobulina G/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Infliximab , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Conformación Proteica , Receptores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/inmunología
4.
J Pharm Sci ; 99(8): 3343-61, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20229596

RESUMEN

The development of a Microflow digital imaging (MDI) method to detect and monitor protein particulates in a high concentration IgG1 monoclonal antibody formulation is presented. The MDI assay was optimized and qualified as a characterization assay in terms of accuracy and precision of particle size and number using polystyrene standards (5-300 microm) and protein particles (2 to >100 microm). The stability profile of a 90 mg/mL IgG1 formulation stored at 2-8 degrees C and -70 degrees C for up to 18 months was then investigated. The MDI assay results showed improved sensitivity to detect subvisible particulates (>or=5 microm) compared to conventional light obscuration detection, presumably due to the translucent nature of the protein particles. For evaluation of visible protein particles (>70 microm), a good overall correlation was observed for MDI, inverted microscopy and visual assessments. Long-term stability data for a high concentration IgG1 monoclonal antibody formulation demonstrated an accumulation of protein particles in certain size categories with a concomitant increase in the overall particle size distribution over time. The weight amount of protein particulates in the IgG1 formulation was measured experimentally as approximately 0.022% (approximately 20 microg/mL) after storage at 2-8 degrees C for 16 months. Similar results were obtained by calculation from the MDI particle data indicating a low level of protein particulates by weight. The nature and composition of the protein particulates formed during storage were further characterized by a combination of inverted microscopy, FTIR microscopy, and SEM-EDX. Particulates were identified as protein with silicone, although some particles also contained other elements such as aluminum. The combination of MDI results and protein characterization studies have provided an enhanced understanding of protein particulate formation during long-term storage of a high concentration IgG1 monoclonal antibody formulation.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/inmunología , Material Particulado/química , Proteínas/química , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Microscopía Electrónica de Rastreo , Nefelometría y Turbidimetría , Tamaño de la Partícula , Mapeo Peptídico , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
5.
J Pharm Sci ; 98(9): 3117-30, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19009595

RESUMEN

The photodegradation of a human IgG1 monoclonal antibody has been examined in a high concentration (100 mg/mL) liquid formulation. It was observed that a yellowish color is generated when the formulation is exposed to intense and prolonged light exposure, and this discoloration occurs along with a loss in bioactivity. Extensive analytical characterization was performed to determine light induced degradation pathways that occur during exposure to intense light of ICH photodegradation conditions. It has been shown that the monoclonal antibody undergoes a combination of physical and chemical reactions under these conditions, including covalent aggregate formation, fragmentation at the hinge region, oxidation of Trp, His, and Met residues, and deamidation of Asn residues. Oxidation of Trp 94 and deamidation of Asn 93, located in the light chain CDR region, correlates with loss of bioactivity under these conditions. A series of formulation experiments were performed to elucidate the impact of the extent of light exposure, oxygen, protein concentration, and solution pH on the photostability of the formulation. Results demonstrated that photodegradation of the IgG, after intensive light exposure, can be prevented by proper secondary packaging. In addition, it is also shown that a high concentration, liquid dosage form of a human monoclonal antibody is stable upon exposure to the ambient light conditions encountered during routine manufacturing, long-term storage, and administration with proper design of formulation conditions, the primary container as well as the secondary package.


Asunto(s)
Inmunoglobulina G/análisis , Inmunoglobulina G/metabolismo , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/metabolismo , Excipientes , Humanos , Luz , Nitrógeno , Oxidación-Reducción , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...