Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Int J Biol Macromol ; 266(Pt 1): 131054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522702

RESUMEN

The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.


Asunto(s)
COVID-19 , Mutación Missense , SARS-CoV-2 , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , Humanos , Sustitución de Aminoácidos , Proteínas Virales/genética , Proteínas Virales/química , Pandemias , Genoma Viral
3.
Reprod Biomed Online ; 45(3): 508-518, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798635

RESUMEN

RESEARCH QUESTION: Can a methodology be developed for case selection and whole-exome sequencing (WES) analysis of women who are infertile owing to recurrent oocyte maturation defects (OOMD) and/or preimplantation embryo lethality (PREMBL)? DESIGN: Data were collected from IVF patients attending the Istanbul Memorial Hospital (2015-2021). A statistical methodology to identify infertile endophenotypes (recurrent low oocyte maturation rate, low fertilization rate and preimplantation developmental arrest) was developed using a large IVF dataset (11,221 couples). Twenty-eight infertile women with OOMD/PREMBL were subsequently enrolled for WES on their genomic DNA. Pathogenic variants were prioritized using a custom-made bioinformatic pipeline set to minimize false-positive discoveries through resampling in control cohorts (the Human Genome Diversity Project and 1343 whole-exome sequences from oocyte donors). Individual single-cell RNA sequencing data from 18 human metaphase II (MII) oocytes and antral granulosa cells was used for genome-wide validation. WES and bioinformatics were performed at Igenomix and the National Research Council, Italy. RESULTS: Variant prioritization analysis identified 265 unique variants in 248 genes (average 22.4 per sample). Of the genes harbouring high-impact variants 78% were expressed by MII oocytes and/or antral granulosa cells, significantly higher than for random sample of controls (odds ratio = 5, Fisher's exact P = 0.0004). Seven of the 28 women (25%) were homozygous carriers of missense pathogenic variants in known candidate genes for OOMD/PREMBL, including PATL2, NLRP5 (n = 2),TLE6, PADI6, TUBB8 and TRIP13. Furthermore, novel gene-disease associations were identified. In fact, one woman with a low oocyte maturation rate was a homozygous carrier of high-impact variants in ENSA, an essential gene for prophase I meiotic transition in mice. CONCLUSIONS: This analytical framework could reveal known and new genes associated with isolated recurrent OOMD/PREMBL, providing essential indications for scaling this strategy to larger studies.


Asunto(s)
Infertilidad Femenina , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Proteínas de Ciclo Celular/genética , Exoma , Femenino , Humanos , Infertilidad Femenina/genética , Ratones , Oocitos/patología , Oogénesis , Tubulina (Proteína)/genética , Secuenciación del Exoma
4.
Sci Rep ; 12(1): 1997, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132093

RESUMEN

Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.


Asunto(s)
Aborto Espontáneo/genética , Aneuploidia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 9/genética , Femenino , Humanos , Ratones , Proteínas Nucleares , Embarazo , Receptores Notch/genética , Proteínas Represoras , Proteínas Wnt/genética , Cohesinas
5.
Sci Rep ; 11(1): 24495, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34969951

RESUMEN

The ability of SARS-CoV-2 to rapidly mutate represents a remarkable complicancy. Quantitative evaluations of the effects that these mutations have on the virus structure/function is of great relevance and the availability of a large number of SARS-CoV-2 sequences since the early phases of the pandemic represents a unique opportunity to follow the adaptation of the virus to humans. Here, we evaluated the SARS-CoV-2 amino acid mutations and their progression by analyzing publicly available viral genomes at three stages of the pandemic (2020 March 15th and October 7th, 2021 February 7th). Mutations were classified in conservative and non-conservative based on the probability to be accepted during the evolution according to the Point Accepted Mutation substitution matrices and on the similarity of the encoding codons. We found that the most frequent substitutions are T > I, L > F, and A > V and we observe accumulation of hydrophobic residues. These findings are consistent among the three stages analyzed. We also found that non-conservative mutations are less frequent than conservative ones. This finding may be ascribed to a progressive adaptation of the virus to the host. In conclusion, the present study provides indications of the early evolution of the virus and tools for the global and genome-specific evaluation of the possible impact of mutations on the structure/function of SARS-CoV-2 variants.


Asunto(s)
COVID-19/virología , Variación Genética , Genoma Viral , Pandemias , SARS-CoV-2/genética , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...