Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(7): 1800-1822, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38109712

RESUMEN

The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.


Asunto(s)
Flores , Ranunculales , Filogenia , Evolución Biológica , Hojas de la Planta/genética
2.
J Exp Bot ; 74(5): 1448-1459, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512646

RESUMEN

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph. All [T] morph plants are homozygous for an NdAP3-3 allele with a Miniature Inverted-repeat Transposable Element (MITE) insertion in the second intron of the gene. Here, we investigated to which extent the MITE insertion impairs regulation of the NdAP3-3 gene. We found that expression of NdAP3-3 is initiated in the [T] morph, but the MITE insertion prevents its positive self-maintenance by affecting the correct splicing of the mRNA. We also found specific CArG features in the promoter of the NdAP3-3 genes with petal-specific expression. However, they are not sufficient to drive expression only in petals of transgenic Arabidopsis, highlighting the existence of Nigella-specific cis/trans-acting factors in regulating AP3 paralogs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nigella damascena , Nigella damascena/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Arabidopsis/metabolismo , Flores , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
3.
Front Plant Sci ; 13: 1055196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531353

RESUMEN

TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.

4.
Front Plant Sci ; 13: 961906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212342

RESUMEN

Ranunculaceae comprise ca. 2,500 species (ca. 55 genera) that display a broad range of floral diversity, particularly at the level of the perianth. Petals, when present, are often referred to as "elaborate" because they have a complex morphology. In addition, the petals usually produce and store nectar, which gives them a crucial functional role in the interaction with pollinators. Its morphological diversity and species richness make this family a particularly suitable model group for studying the evolution of complex morphologies. Our aims are (1) to reconstruct the ancestral form of the petal and evolutionary stages at the scale of Ranunculaceae, (2) to test the hypothesis that there are morphogenetic regions on the petal that are common to all species and that interspecific morphological diversity may be due to differences in the relative proportions of these regions during development. We scored and analyzed traits (descriptors) that characterize in detail the complexity of mature petal morphology in 32 genera. Furthermore, we described petal development using high resolution X-Ray computed tomography (HRX-CT) in six species with contrasting petal forms (Ficaria verna, Helleborus orientalis, Staphisagria picta, Aconitum napellus, Nigella damascena, Aquilegia vulgaris). Ancestral state reconstruction was performed using a robust and dated phylogeny of the family, allowing us to produce new hypotheses for petal evolution in Ranunculaceae. Our results suggest a flat ancestral petal with a short claw for the entire family and for the ancestors of all tribes except Adonideae. The elaborate petals that are present in different lineages have evolved independently, and similar morphologies are the result of convergent evolution.

5.
Front Plant Sci ; 12: 769246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868166

RESUMEN

Petals, the inner organs in a differentiated perianth, generally play an important role in pollinator attraction. As such they exhibit an extraordinary diversity of shapes, sizes, and colors. Being involved in pollinator attraction and reward, they are privileged targets of evolution. The corolla of the Ranunculaceae species Nigella damascena consists of elaborate nectariferous petals, made of a stalk, upper, and lower lips forming a nectar pouch, shiny pseudonectaries, and pilose ears. While the main events of petal development are properly described, a few is known about the pattern of organ size and shape covariation and the cellular dynamics during development. In this study, we investigated the relationships between morphogenesis and growth of N. damascena petals using geometric morphometrics coupled with the study of cell characteristics. First, we found that petal shape and size dynamics are allometric during development and that their covariation suggests that petal shape change dynamics are exponentially slower than growth. We then found that cell proliferation is the major driver of shape patterning during development, while petal size dynamics are mostly driven by cell expansion. Our analyses provide a quantitative basis to characterize the relationships between shape, size, and cell characteristics during the development of an elaborate floral structure. Such studies lay the ground for future evo-devo investigations of the large morphological diversity observed in nectariferous structures, in Ranunculaceae and beyond.

6.
Front Plant Sci ; 12: 660803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149759

RESUMEN

Even though petals are homoplastic structures, their identity consistently involves genes of the APETALA3 (AP3) lineage. However, the extent to which the networks downstream of AP3 are conserved in species with petals of different evolutionary origins is unknown. In Ranunculaceae, the specificity of the AP3-III lineage offers a great opportunity to identify the petal gene regulatory network in a comparative framework. Using a transcriptomic approach, we investigated putative target genes of the AP3-III ortholog NdAP3-3 in Nigella damascena at early developmental stages when petal identity is determined, and we compared our data with that from selected eudicot species. We generated a de novo reference transcriptome to carry out a differential gene expression analysis between the wild-type and mutant NdAP3-3 genotypes differing by the presence vs. absence of petals at early stages of floral development. Among the 1,620 genes that were significantly differentially expressed between the two genotypes, functional annotation suggested a large involvement of nuclear activities, including regulation of transcription, and enrichment in processes linked to cell proliferation. Comparing with Arabidopsis data, we found that highly conserved genes between the two species are enriched in homologs of direct targets of the AtAP3 protein. Integrating AP3-3 binding site data from another Ranunculaceae species, Aquilegia coerulea, allowed us to identify a set of 18 putative target genes that were conserved between the three species. Our results suggest that, despite the independent evolutionary origin of petals in core eudicots and Ranunculaceae, a small conserved set of genes determines petal identity and early development in these taxa.

7.
Biol Rev Camb Philos Soc ; 96(4): 1676-1693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955646

RESUMEN

The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.


Asunto(s)
Mimetismo Biológico , Eucariontes , Evolución Biológica , Color , Fenotipo , Pigmentación
8.
Front Plant Sci ; 10: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30740117

RESUMEN

Proteaceae are a basal eudicot family with a highly conserved floral groundplan but which displays considerable variation in other aspects of floral and inflorescence morphology. Their morphological diversity and phylogenetic position make them good candidates for understanding the evolution of floral architecture, in particular the question of the homology of the undifferentiated perianth with the differentiated perianth of core eudicots, and the mechanisms underlying the repeated evolution of zygomorphy. In this paper, we combine a morphological approach to explore floral ontogenesis and a transcriptomic approach to access the genes involved in floral organ identity and development, focusing on Grevillea juniperina, a species from subfamily Grevilleoideae. We present developmental data for Grevillea juniperina and three additional species that differ in their floral symmetry using stereomicroscopy, SEM and High Resolution X-Ray Computed Tomography. We find that the adnation of stamens to tepals takes place at early developmental stages, and that the establishment of bilateral symmetry coincides with the asymmetrical growth of the single carpel. To set a framework for understanding the genetic basis of floral development in Proteaceae, we generated and annotated de novo a reference leaf/flower transcriptome from Grevillea juniperina. We found Grevillea homologs of all lineages of MADS-box genes involved in floral organ identity. Using Arabidopsis thaliana gene expression data as a reference, we found homologs of other genes involved in floral development in the transcriptome of G. juniperina. We also found at least 21 class I and class II TCP genes, a gene family involved in the regulation of growth processes, including floral symmetry. The expression patterns of a set of floral genes obtained from the transcriptome were characterized during floral development to assess their organ specificity and asymmetry of expression.

9.
New Phytol ; 216(2): 361-366, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28052360

RESUMEN

Contents 361 I. 361 II. 362 III. 363 IV. 364 V. 364 Acknowledgements 365 References 365 SUMMARY: Ranunculales, the sister group to all other eudicots, encompasses species with a remarkable floral diversity, which are currently emerging as new model organisms to address questions relating to the genetic architecture of flower morphology and its evolution. These questions concern either traits only found in members of the Ranunculales or traits that have convergently evolved in other large clades of flowering plants. We present recent results obtained on floral organ identity and number, symmetry evolution and spur formation in Ranunculales species. We discuss benefits and future prospects of evo-devo studies in Ranunculales, which can provide the opportunity to decipher the genetic architecture of novel floral traits and also to appraise the degree of conservation of genetic mechanisms involved in homoplasious traits.


Asunto(s)
Evolución Biológica , Flores/crecimiento & desarrollo , Flores/genética , Modelos Biológicos , Ranunculaceae/crecimiento & desarrollo , Ranunculaceae/genética , Filogenia , Polinización/fisiología
10.
Ann Bot ; 119(3): 367-378, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28025288

RESUMEN

BACKGROUND AND AIMS: The basal eudicot family Proteaceae (approx. 1700 species) shows considerable variation in floral symmetry but has received little attention in studies of evolutionary development at the genetic level. A framework for understanding the shifts in floral symmetry in Proteaceae is provided by reconstructing ancestral states on an upated phylogeny of the family, and homologues of CYCLOIDEA (CYC), a key gene for the control of floral symmetry in both monocots and eudicots, are characterized. METHODS: Perianth symmetry transitions were reconstructed on a new species-level tree using parsimony and maximum likelihood. CYC-like genes in 35 species (31 genera) of Proteaceae were sequenced and their phylogeny was reconstructed. Shifts in selection pressure following gene duplication were investigated using nested branch-site models of sequence evolution. Expression patterns of CYC homologues were characterized in three species of Grevillea with different types of floral symmetry. KEY RESULTS: Zygomorphy has evolved 10-18 times independently in Proteaceae from actinomorphic ancestors, with at least four reversals to actinomorphy. A single duplication of CYC-like genes occurred prior to the diversification of Proteaceae, with putative loss or divergence of the ProtCYC1 paralogue in more than half of the species sampled. No shifts in selection pressure were detected in the branches subtending the two ProtCYC paralogues. However, the amino acid sequence preceding the TCP domain is strongly divergent in Grevillea ProtCYC1 compared with other species. ProtCYC genes were expressed in developing flowers of both actinomorphic and zygomorphic Grevillea species, with late asymmetric expression in the perianth of the latter. CONCLUSION: Proteaceae is a remarkable family in terms of the number of transitions in floral symmetry. Furthermore, although CYC-like genes in Grevillea have unusual sequence characteristics, they display patterns of expression that make them good candidates for playing a role in the establishment of floral symmetry.


Asunto(s)
Flores/anatomía & histología , Genes de Plantas/genética , Proteaceae/genética , Factores de Transcripción/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Proteaceae/anatomía & histología , Análisis de Secuencia de ADN , Factores de Transcripción/fisiología
11.
Ann Bot ; 115(6): 895-914, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25814061

RESUMEN

BACKGROUND AND AIMS: Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family. METHODS: Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90 %) genera and 73 species of Fumarioideae, 11 (48 %) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches. KEY RESULTS: Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa. CONCLUSIONS: Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.


Asunto(s)
Flores/anatomía & histología , Papaveraceae/anatomía & histología , Filogenia , Evolución Biológica , Funciones de Verosimilitud
12.
PLoS One ; 9(4): e95727, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24752428

RESUMEN

Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.


Asunto(s)
Ranunculaceae/genética , Flores/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Filogenia
13.
PLoS One ; 8(9): e74803, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019982

RESUMEN

TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.


Asunto(s)
Evolución Molecular , Filogenia , Factores de Transcripción/genética , Genes de Plantas
14.
Plant J ; 76(2): 223-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23855996

RESUMEN

Flower architecture mutants provide a unique opportunity to address the genetic origin of flower diversity. Here we study a naturally occurring floral dimorphism in Nigella damascena (Ranunculaceae), involving replacement of the petals by numerous sepal-like and chimeric sepal/stamen organs. We performed a comparative study of floral morphology and floral development, and characterized the expression of APETALA3 and PISTILLATA homologs in both morphs. Segregation analyses and gene silencing were used to determine the involvement of an APETALA3 paralog (NdAP3-3) in the floral dimorphism. We demonstrate that the complex floral dimorphism is controlled by a single locus, which perfectly co-segregates with the NdAP3-3 gene. This gene is not expressed in the apetalous morph and exhibits a particular expression dynamic during early floral development in the petalous morph. NdAP3-3 silencing in petalous plants perfectly phenocopies the apetalous morph. Our results show that NdAP3-3 is fully responsible for the complex N. damascena floral dimorphism, suggesting that it plays a role not only in petal identity but also in meristem patterning, possibly through regulation of perianth organ number and the perianth/stamen boundary.


Asunto(s)
Flores/anatomía & histología , Proteínas de Dominio MADS/metabolismo , Meristema/crecimiento & desarrollo , Nigella damascena/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Dominio MADS/genética , Meristema/genética , Microscopía Electrónica de Rastreo , Nigella damascena/crecimiento & desarrollo , Proteínas de Plantas/genética
15.
Am J Bot ; 100(2): 391-402, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23378492

RESUMEN

PREMISE OF THE STUDY: Zygomorphy has evolved multiple times in angiosperms. Near-actinomorphy is the ancestral state in the early diverging eudicot family Papaveraceae. Zygomorphy evolved once in the subfamily Fumarioideae from a disymmetric state. Unusual within angiosperms, zygomorphy takes place along the transverse plane of the flower. METHODS: We investigated floral development to understand the developmental bases of the evolution of floral symmetry in Papaveraceae. We then assessed the expression of candidate genes for the key developmental events responsible for the shift from disymmetry to transverse zygomorphy, namely CrabsClaw for nectary formation (PapCRC), ShootMeristemless (PapSTL) for spur formation, and Cycloidea (PapCYL) for growth control. KEY RESULTS: We found that an early disymmetric groundplan is common to all species studied, and that actinomorphy was acquired after sepal initiation in Papaveroideae. The shift from disymmetry to zygomorphy in Fumarioideae was associated with early asymmetric growth of stamen filaments, followed by asymmetric development of nectary outgrowth and spur along the transverse plane. Patterns of PapSTL expression could not be clearly related to spur formation. PapCRC and PapCYL genes were expressed in the nectary outgrowths, with a pattern of expression correlated with asymmetric nectary development in the zygomorphic species. Additionally, PapCYL genes were found asymmetrically expressed along the transverse plane in the basal region of outer petals in the zygomorphic species. CONCLUSION: Genes of PapCRC and PapCYL families could be direct or indirect targets of the initial transversally asymmetric cue responsible for the shift from disymmetry to zygomorphy in Fumarioideae.


Asunto(s)
Evolución Biológica , Flores/crecimiento & desarrollo , Papaveraceae/crecimiento & desarrollo , Arabidopsis/genética , Flores/ultraestructura , Expresión Génica , Genes de Plantas , Papaveraceae/genética , Papaveraceae/ultraestructura , Homología de Secuencia de Ácido Nucleico
16.
Ann Bot ; 109(4): 693-708, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22307567

RESUMEN

BACKGROUND AND AIMS: ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch biosynthesis. In the green plant lineage, it is composed of two large (LSU) and two small (SSU) sub-units encoded by paralogous genes, as a consequence of several rounds of duplication. First, our aim was to detect specific patterns of molecular evolution following duplication events and the divergence between monocotyledons and dicotyledons. Secondly, we investigated coevolution between amino acids both within and between sub-units. METHODS: A phylogeny of each AGPase sub-unit was built using all gymnosperm and angiosperm sequences available in databases. Accelerated evolution along specific branches was tested using the ratio of the non-synonymous to the synonymous substitution rate. Coevolution between amino acids was investigated taking into account compensatory changes between co-substitutions. KEY RESULTS: We showed that SSU paralogues evolved under high functional constraints during angiosperm radiation, with a significant level of coevolution between amino acids that participate in SSU major functions. In contrast, in the LSU paralogues, we identified residues under positive selection (1) following the first LSU duplication that gave rise to two paralogues mainly expressed in angiosperm source and sink tissues, respectively; and (2) following the emergence of grass-specific paralogues expressed in the endosperm. Finally, we found coevolution between residues that belong to the interaction domains of both sub-units. CONCLUSIONS: Our results support the view that coevolution among amino acid residues, especially those lying in the interaction domain of each sub-unit, played an important role in AGPase evolution. First, within SSU, coevolution allowed compensating mutations in a highly constrained context. Secondly, the LSU paralogues probably acquired tissue-specific expression and regulatory properties via the coevolution between sub-unit interacting domains. Finally, the pattern we observed during LSU evolution is consistent with repeated sub-functionalization under 'Escape from Adaptive Conflict', a model rarely illustrated in the literature.


Asunto(s)
Evolución Molecular , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Magnoliopsida/genética , Magnoliopsida/efectos de la radiación , Secuencia de Aminoácidos , Secuencia de Bases , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Magnoliopsida/enzimología , Datos de Secuencia Molecular , Filogenia , Selección Genética , Almidón/biosíntesis
17.
Plant Physiol ; 157(2): 917-36, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852416

RESUMEN

Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1-overexpressing leaves led to the identification of three transcripts and 16 proteins up- or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1-overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1-overexpressing leaves, including two BCAAs. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteómica , Estrés Fisiológico , Agua , Zea mays/genética
19.
Plant Cell ; 23(1): 54-68, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21258003

RESUMEN

CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Transformación Genética
20.
Ann Bot ; 104(5): 809-22, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19608573

RESUMEN

BACKGROUND AND AIMS: Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty. METHODS; The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors. KEY RESULTS: In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla. CONCLUSIONS: It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.


Asunto(s)
Delphinium/genética , Flores/genética , Evolución Biológica , Delphinium/anatomía & histología , Delphinium/crecimiento & desarrollo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Nigella/anatomía & histología , Nigella/genética , Nigella/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA