RESUMEN
Piezo- and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro- and piezoelectricity in thin surface-attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface-initiated polymerization. The pyro- and piezoelectric properties of the surface-grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion. The observed piezo- and pyroelectric properties reflect the structural complexity of polymer brushes, and are attributed to a complex interplay of the non-uniform segment density within these films, together with a non-uniform distribution of counterions and specific ion effects. The fabrication of thin pyroelectric films by surface-initiated polymerization is an important addition to the existing strategies toward such materials. Surface-initiated polymerization, in particular, allows for facile grafting of polar thin polymer films from a wide range of substrates via a straightforward two-step protocol that obviates the need for multistep laborious synthetic procedures or thin film deposition protocols. The ability to produce polymer brushes with piezo- and pyroelectric properties opens up new avenues of application of these materials, for example, in energy harvesting or biosensing.
RESUMEN
The electrostrictive effect, which induces strain in ferroelectric ceramics, offers distinct advantages over its piezoelectric counterpart for high-precision actuator applications, including anhysteretic behavior even at high frequencies, rapid reaction times, and no requirement for poling. Historically, commercially available electrostrictive materials have been lead oxide-based. However, global restrictions on the use of lead in electronic components necessitate the exploration of lead-free electrostrictive ceramics with a high strain performance. Although various engineering strategies for producing materials with high strain have been proposed, they typically come at the expense of increased strain hysteresis. Here, we describe the extraordinary electrostrictive response of (Ba0.95Ca0.05)(Ti0.88Sn0.12)O3 (BCTS) ceramics with ultrahigh electrostrictive strain and negligible hysteresis achieved through texture engineering leveraging the anisotropic intrinsic lattice contribution. The BCTS ceramics exhibit a high unipolar strain of 0.175%, a substantial electrostrictive coefficient Q33 of 0.0715 m4 C-2, and an ultralow hysteresis of less than 0.8%. Notably, the Q33 value is three times greater than that of high-performance lead-based Pb(Mg1/3Nb2/3)O3 electrostrictive ceramics. Multiscale structural analyses demonstrate that the electrostrictive effect dominates the BCTS strain response. This research introduces a novel approach to texture engineering to enhance the electrostrictive effect, offering a promising paradigm for future advancements in this field.
RESUMEN
We report an intrinsic strain engineering, akin to thin filmlike approaches, via irreversible high-temperature plastic deformation of a tetragonal ferroelectric single-crystal BaTiO_{3}. Dislocations well-aligned along the [001] axis and associated strain fields in plane defined by the [110]/[1[over ¯]10] plane are introduced into the volume, thus nucleating only in-plane domain variants. By combining direct experimental observations and theoretical analyses, we reveal that domain instability and extrinsic degradation processes can both be mitigated during the aging and fatigue processes, and demonstrate that this requires careful strain tuning of the ratio of in-plane and out-of-plane domain variants. Our findings advance the understanding of structural defects that drive domain nucleation and instabilities in ferroic materials and are essential for mitigating device degradation.
RESUMEN
The atomic-level response of zigzag ferroelectric domain walls (DWs) was investigated with in situ bias scanning transmission electron microscopy (STEM) in a subcoercive-field regime. Atomic-level movement of a single DW was observed. Unexpectedly, the change in the position of the DW, determined from the atomic displacement, did not follow the position of the strain field when the electric field was applied. This can be explained as low mobility defect segregation at the initial DW position, such as ordered clusters of oxygen vacancies. Further, the triangular apex of the zigzag wall is pinned, but it changes its shape and becomes asymmetric under electrical stimuli. This phenomenon is accompanied by strain and bound charge redistribution. We report on unique atomic-scale phenomena at the DW level and show that in situ STEM studies with atomic resolution are very relevant as they complement, and sometimes challenge, the knowledge gained from lower resolution studies.
RESUMEN
Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation-domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V-1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation-domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.
RESUMEN
Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10-19 m2 V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties1,2. Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized δ-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 × 10-14 m2 V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.
Asunto(s)
Óxidos , Óxidos/químicaRESUMEN
Ferroelectric materials, upon electric field biasing, display polarization discontinuities known as Barkhausen jumps, a subclass of a more general phenomenon known as crackling noise. Herein, we follow and visualize in real time the motion of single 90° needle domains induced by an electric field applied in the polarization direction of the prototypical ferroelectric BaTiO_{3}, inside a transmission electron microscope. The nature of motion and periodicity of the Barkhausen pulses leads to distinctive interactions between domains forming a herringbone pattern. Remarkably, the tips of the domains do not come into contact with the body of the perpendicular domain, suggesting the presence of strong electromechanical fields around the tips of the needle domains. Additionally, interactions of the domains with the lattice result in relatively free movement of the domain walls through the dielectric medium, indicating that their motion-related activation energy depends only on weak Peierls-like potentials. Control over the kinetics of ferroelastic domain wall motion can lead to novel nanoelectronic devices pertinent to computing and data storage applications.
RESUMEN
The nature of the "forbidden" local- and long-range polar order in nominally non-polar paraelectric phases of ferroelectric materials has been an open question since the discovery of ferroelectricity in oxide perovskites, ABO3. A currently considered model suggests locally correlated displacements of B-site atoms along a subset of <111> cubic directions. Such off-site displacements have been confirmed experimentally; however, being essentially dynamic in nature they cannot account for the static nature of the symmetry-forbidden polarization implied by the macroscopic experiments. Here, in an atomically resolved study by aberration-corrected scanning transmission electron microscopy complemented by Raman spectroscopy, we reveal, directly visualize and quantitatively describe static, 2-4 nm large polar nanoclusters in the nominally non-polar cubic phases of (Ba,Sr)TiO3 and BaTiO3. These results have implications on understanding of the atomic-scale structure of disordered materials, the origin of precursor states in ferroelectrics, and may help answering ambiguities on the dynamic-versus-static nature of nano-sized clusters.
RESUMEN
Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting. The resulting microstructure yields a strong mechanical restoring force to revert electric field-induced domain wall displacement on the macroscopic level and high pinning force on the local level. This induces a giant increase of the dielectric and electromechanical response at intermediate electric fields in barium titanate [electric field-dependent permittivity (ε33) ≈ 5800 and large-signal piezoelectric coefficient (d 33*) ≈ 1890 picometers/volt]. Dislocation-based anisotropy delivers a different suite of tools with which to tailor functional materials.
RESUMEN
Composites in which particles of ferroelectric ceramic phase are randomly dispersed in a polymeric matrix are of interest because of flexibility, conformability, and ease of processing. However, their piezoelectric properties are rather low, unless very high volume fractions of ceramics are used. This brings agglomeration and porosity issues due to the large mismatch between the surface energies of the ceramics and of the polymer. Particle surface modification is a common approach for better dispersion; however, it may bring other effects on the properties of the composites, which are usually concealed by the huge improvement in performance due to the more homogenous microstructure. In this work, we compared poly(vinylidene fluoride-trifluoroethylene)/barium titanate composites containing 15 vol.% and 60 vol.% of pristine ceramic particles or particles modified with an aminosilane or a fluorosilane. Similar morphology, with good particle dispersion and low porosity, was achieved for all composites, owing to an efficient dispersion method. The materials were poled with two different poling procedures, and the piezoelectric coefficient d33, the relative permittivity, and the poling degree of barium titanate were followed in time. We highlighted that, although similar d33 were obtained with all types of particles, the nature of the particles surface and the poling procedure were associated with different charge trapping and influenced the evolution of d33 with time.
RESUMEN
Depolarization in ferroelectric materials has been studied since the 1970s, albeit quasi-statically. The dynamics are described by the empirical Merz law, which gives the polarization switching time as a function of electric field, normalized to the so-called activation field. The Merz law has been used for decades; its origin as domain-wall depinning has recently been corroborated by molecular dynamics simulations. Here we experimentally investigate domain-wall depinning by measuring the dynamics of depolarization. We find that the boundary between thermodynamically stable and depolarizing regimes can be described by a single constant, Pr/ε0εferroEc. Among different multidomain ferroelectric materials the values of coercive field, Ec, dielectric constant, εferro, and remanent polarization, Pr, vary by orders of magnitude; the value for Pr/ε0εferroEc however is comparable, about 15. Using this extracted universal value, we show that the depolarization field is similar to the activation field, which corresponds to the transition from creep to domain-wall flow.
RESUMEN
Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroelectrics. In situ X-ray diffraction was used to separate the electric-field-induced lattice strain and strain due to displacements of non-180° domain walls in polycrystalline BiFeO3 over a wide frequency range. These piezoelectric strain mechanisms have opposing trends as a function of frequency. The lattice strain increases with increasing frequency, showing negative piezoelectric phase angle (i.e., strain leads the electric field), an unusual feature so far demonstrated only in the total macroscopic piezoelectric response. Domain-wall motion exhibits the opposite behaviour, it decreases in magnitude with increasing frequency, showing more common positive piezoelectric phase angle (i.e., strain lags behind the electric field). Charge redistribution at conducting domain walls, oriented differently in different grain families, is demonstrated to be the cause.
RESUMEN
The characteristic functionality of ferroelectric materials is due to the symmetry of their crystalline structure. As such, ferroelectrics lend themselves to design approaches that manipulate this structural symmetry by introducing extrinsic strain. Using in situ dark-field X-ray microscopy to map lattice distortions around deeply embedded domain walls and grain boundaries in BaTiO3, we reveal that symmetry-breaking strain fields extend up to several micrometres from domain walls. As this exceeds the average domain width, no part of the material is elastically relaxed, and symmetry is universally broken. Such extrinsic strains are pivotal in defining the local properties and self-organization of embedded domain walls, and must be accounted for by emerging computational approaches to material design.
RESUMEN
Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling.
Asunto(s)
Huesos , Colágeno , ElectricidadRESUMEN
Copolymer nanoparticles with a highly polar repeating unit are blended in an elastic matrix and poled at elevated temperatures. The composite exhibits piezoelectricity due to the overall polarization imparted by the particles, which can be easily modulated thanks to the soft matrix.
RESUMEN
Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.
RESUMEN
Charged domain walls in ferroelectrics are movable and electronically conducting interfaces inside insulating materials. A simple and reliable method for their artificial production with ultraviolet (UV) light is described. The UV illumination produces free carriers in ferroelectric bulk, which simultaneously promotes the formation of charged domain walls and provides charge for their compensation.
RESUMEN
Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to â¼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC â¼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.
RESUMEN
Piezoelectricity describes interconversion between electrical charge and mechanical strain. As expected for lattice ions displaced in an electric field, the proportionality constant is positive for all piezoelectric materials. The exceptions are poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (P(VDF-TrFE)), which exhibit a negative longitudinal piezoelectric coefficient. Reported explanations exclusively consider contraction with applied electric field of either the crystalline or the amorphous part of these semi-crystalline polymers. To distinguish between these conflicting interpretations, we have performed in situ dynamic X-ray diffraction measurements on P(VDF-TrFE) capacitors. We find that the piezoelectric effect is dominated by the change in lattice constant but, surprisingly, it cannot be accounted for by the polarization-biased electrostrictive contribution of the crystalline part alone. Our quantitative analysis shows that an additional contribution is operative, which we argue is due to an electromechanical coupling between the intermixed crystalline lamellae and amorphous regions. Our findings tie the counterintuitive negative piezoelectric response of PVDF and its copolymers to the dynamics of their composite microstructure.