Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Front Mol Biosci ; 10: 1254058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719269

RESUMEN

Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.

3.
Toxins (Basel) ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37368672

RESUMEN

European vipers (genus Vipera) are medically important snakes displaying considerable venom variation, occurring at different levels in this group. The presence of intraspecific venom variation, however, remains understudied in several Vipera species. Vipera seoanei is a venomous snake endemic to the northern Iberian Peninsula and south-western France, presenting notable phenotypic variation and inhabiting several diverse habitats across its range. We analysed the venoms of 49 adult specimens of V. seoanei from 20 localities across the species' Iberian distribution. We used a pool of all individual venoms to generate a V. seoanei venom reference proteome, produced SDS-PAGE profiles of all venom samples, and visualised patterns of variation using NMDS. By applying linear regression, we then assessed presence and nature of venom variation between localities, and investigated the effect of 14 predictors (biological, eco-geographic, genetic) on its occurrence. The venom comprised at least 12 different toxin families, of which five (i.e., PLA2, svSP, DI, snaclec, svMP) accounted for about 75% of the whole proteome. The comparative analyses of the SDS-PAGE venom profiles showed them to be remarkably similar across the sampled localities, suggesting low geographic variability. The regression analyses suggested significant effects of biological and habitat predictors on the little variation we detected across the analysed V. seoanei venoms. Other factors were also significantly associated with the presence/absence of individual bands in the SDS-PAGE profiles. The low levels of venom variability we detected within V. seoanei might be the result of a recent population expansion, or of processes other than directional positive selection.


Asunto(s)
Venenos de Víboras , Viperidae , Animales , Ecosistema , Proteoma/análisis , Toxinas Biológicas/análisis , Ponzoñas
4.
Chembiochem ; 24(13): e202300233, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37252886

RESUMEN

The fungal cyclodepsipeptides (CDPs) enniatin, beauvericin, bassianolide, and PF1022 consist of alternating N-methylated l-amino and d-hydroxy acids. They are synthesized by non-ribosomal peptide synthetases (NRPS). The amino acid and hydroxy acid substrates are activated by adenylation (A) domains. Although various A domains have been characterized thus giving insights into the mechanism of substrate conversion, little is known about the utilization of hydroxy acids in NRPSs. Therefore, we used homology modelling and molecular docking of the A1 domain of enniatin synthetase (EnSyn) to gain insights into the mechanism of hydroxy acid activation. We introduced point mutations into the active site and used a photometric assay to study the substrate activation. The results suggest that the hydroxy acid is selected by interaction with backbone carbonyls rather than by a specific side chain. These insights enhance the understanding of non-amino acid substrate activation and could contribute to the engineering of depsipeptide synthetases.


Asunto(s)
Hidroxiácidos , Péptido Sintasas , Simulación del Acoplamiento Molecular , Péptido Sintasas/metabolismo , Aminoácidos/metabolismo , Dominio Catalítico , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
5.
J Proteome Res ; 22(1): 26-35, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36521429

RESUMEN

Among venomous animals, toxic secretions have evolved as biochemical weapons associated with various highly specialized delivery systems on many occasions. Despite extensive research, there is still limited knowledge of the functional biology of most animal toxins, including their venom production and storage, as well as the morphological structures within sophisticated venom producing tissues that might underpin venom modulation. Here, we report on the spatial exploration of a snake venom gland system by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), in combination with standard proteotranscriptomic approaches, to enable in situ toxin mapping in spatial intensity maps across a venom gland sourced from the Egyptian cobra (Naja haje). MALDI-MSI toxin visualization on the elapid venom gland reveals a high spatial heterogeneity of different toxin classes at the proteoform level, which may be the result of physiological constraints on venom production and/or storage that reflects the potential for venom modulation under diverse stimuli.


Asunto(s)
Venenos Elapídicos , Toxinas Biológicas , Animales , Venenos Elapídicos/química , Venenos de Serpiente/química , Elapidae , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Gigascience ; 112022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35640874

RESUMEN

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Asunto(s)
Proteómica , Ponzoñas , Animales , Investigación , Serpientes/genética , Transcriptoma , Ponzoñas/química , Ponzoñas/genética
7.
J Proteome Res ; 20(11): 5064-5078, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34606723

RESUMEN

We report a novel hybrid, molecular and elemental mass spectrometry (MS) setup for the absolute quantification of snake venom proteomes shown here for two desert black cobra species within the genus Walterinnesia, Walterinnesia aegyptia and Walterinnesia morgani. The experimental design includes the decomplexation of the venom samples by reverse-phase chromatography independently coupled to four mass spectrometry systems: the combined bottom-up and top-down molecular MS for protein identification and a parallel reverse-phase microbore high-performance liquid chromatograph (RP-µHPLC) on-line to inductively coupled plasma (ICP-MS/MS) elemental mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously record the absolute sulfur concentration throughout the chromatogram and assign it to the parent venom proteins separated in the RP-µHPLC-ESI-QToF parallel run via mass profiling. The results provide a locus-resolved and quantitative insight into the three desert black cobra venom proteome samples. They also validate the units of measure of our snake venomics strategy for the relative quantification of snake venom proteomes as % of total venom peptide bonds as a proxy for the % by weight of the venom toxins/toxin families. In a more general context, our work may pave the way for broader applications of hybrid elemental/molecular MS setups in diverse areas of proteomics.


Asunto(s)
Venenos Elapídicos , Elapidae , Proteoma , Animales , Venenos Elapídicos/química , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem
8.
Toxins (Basel) ; 13(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204565

RESUMEN

Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called 'venomics'. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003-2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.


Asunto(s)
Venenos de Serpiente/química , Animales , Proteoma , Proteómica , Viperidae
9.
J Proteome Res ; 19(4): 1731-1749, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32073270

RESUMEN

Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.


Asunto(s)
Pradera , Viperidae , Animales , Humanos , Metaloproteasas , Proteoma , Venenos de Víboras
10.
Artículo en Inglés | MEDLINE | ID: mdl-30825636

RESUMEN

Animal secretions are of great interest in terms of drug development due to their complex protein and peptide composition. Especially, in the field of therapeutic medications such as anti-cancer drugs snake venoms receive attention. In this study, we address two Viperidae species from various habitats with a particular focus on the cytotoxic potential along with the decomplexation of the venom proteome: the horned desert viper (Cerastes cerastes), native to desert regions of North Africa and the mangrove pit viper (Cryptelytrops purpureomaculatus), found in coastal forests of Southeast Asia. Initial cytotoxic screenings of the crude venoms revealed diverse activity, with the highest effect against SHSY5Y human glioblastoma carcinoma cells compared to other cancerous and non-cancerous cell lines. In-depth cytotoxicity studies of SHSY5Y cells with purified venom fractions revealed heterodimeric disintegrins from C. cerastes venom, which exerted a high cytotoxic activity with IC50 values from 0.11 to 0.58 µM and a disintegrin-like effect on SHSY5Y morphology was observed due to cell detachment. Furthermore, two polyproline BPP-related peptides, one PLA2 and a peptide-rich fraction were determined for C. purpureomaculatus with moderate IC50 values between 3 and 51 µM. Additionally, the decryption of the venom proteomes by snake venomic mass spectrometry and comparison of the same species from different habitats revealed slight differences in the composition.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Proteoma/metabolismo , Venenos de Víboras/química , Venenos de Víboras/toxicidad , Viperidae/fisiología , Animales , Línea Celular , Ecosistema , Especificidad de la Especie
11.
Molecules ; 23(8)2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-30060607

RESUMEN

The Asian world is home to a multitude of venomous and dangerous snakes, which are used to induce various medical effects in the preparation of traditional snake tinctures and alcoholics, like the Japanese snake wine, named Habushu. The aim of this work was to perform the first quantitative proteomic analysis of the Protobothrops flavoviridis pit viper venom. Accordingly, the venom was analyzed by complimentary bottom-up and top-down mass spectrometry techniques. The mass spectrometry-based snake venomics approach revealed that more than half of the venom is composed of different phospholipases A2 (PLA2). The combination of this approach and an intact mass profiling led to the identification of the three main Habu PLA2s. Furthermore, nearly one-third of the total venom consists of snake venom metalloproteinases and disintegrins, and several minor represented toxin families were detected: C-type lectin-like proteins (CTL), cysteine-rich secretory proteins (CRISP), snake venom serine proteases (svSP), l-amino acid oxidases (LAAO), phosphodiesterase (PDE) and 5'-nucleotidase. Finally, the venom of P. flavoviridis contains certain bradykinin-potentiating peptides and related peptides, like the svMP inhibitors, pEKW, pEQW, pEEW and pENW. In preliminary MTT cytotoxicity assays, the highest cancerous-cytotoxicity of crude venom was measured against human neuroblastoma SH-SY5Y cells and shows disintegrin-like effects in some fractions.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Venenos de Crotálidos/química , Desintegrinas/aislamiento & purificación , Metaloproteasas/aislamiento & purificación , Fosfolipasas A2/aislamiento & purificación , Trimeresurus/fisiología , 5'-Nucleotidasa/química , 5'-Nucleotidasa/aislamiento & purificación , 5'-Nucleotidasa/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Venenos de Crotálidos/aislamiento & purificación , Desintegrinas/química , Desintegrinas/farmacología , Humanos , Concentración 50 Inhibidora , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/farmacología , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/aislamiento & purificación , L-Aminoácido Oxidasa/farmacología , Lectinas Tipo C/química , Lectinas Tipo C/aislamiento & purificación , Espectrometría de Masas , Metaloproteasas/química , Metaloproteasas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Oligopéptidos/farmacología , Fosfolipasas A2/química , Fosfolipasas A2/farmacología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/farmacología , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Serina Proteasas/farmacología
12.
Toxins (Basel) ; 10(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301241

RESUMEN

The Nose-horned Viper (Vipera ammodytes) is one of the most widespread and venomous snakes in Europe, which causes high frequent snakebite accidents. The first comprehensive venom characterization of the regional endemic Transcaucasian Nose-horned Viper (Vipera ammodytes transcaucasiana) and the Transdanubian Sand Viper (Vipera ammodytes montandoni) is reported employing a combination of intact mass profiling and bottom-up proteomics. The bottom-up analysis of both subspecies identified the major snake protein families of viper venoms. Furthermore, intact mass profiling revealed the presence of two tripeptidic metalloprotease inhibitors and their precursors. While previous reports applied multivariate analysis techniques to clarify the taxonomic status of the subspecies, an accurate classification of Vipera ammodytestranscaucasiana is still part of the ongoing research. The comparative analysis of the viper venoms on the proteome level reveals a close relationship between the Vipera ammodytes subspecies, which could be considered to clarify the classification of the Transcaucasian Nose-horned Viper. However, the slightly different ratio of some venom components could be indicating interspecific variations of the two studied subspecies or intraspecies alternations based on small sample size. Additionally, we performed a bioactivity screening with the crude venoms against several human cancerous and non-cancerous cell lines, which showed interesting results against a human breast adenocarcinoma epithelial cell line. Several fractions of Vipera a. transcaucasiana demonstrated a strong cytotoxic effect on triple negative MDA MB 231 breast cancer cells.


Asunto(s)
Venenos de Víboras/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Proteoma , Proteínas de Reptiles/análisis , Proteínas de Reptiles/farmacología , Turquía , Venenos de Víboras/farmacología , Viperidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA