Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562888

RESUMEN

Clinical biomarker development has been stymied by inaccurate protein quantification from mass spectrometry (MS) discovery data and a prolonged validation process. To mitigate these issues, we created the Targeted Extraction Assessment of Quantification (TEAQ) software package. This innovative tool uses the discovery cohort analysis to select precursors, peptides, and proteins that adhere to established targeted assay criteria. TEAQ was applied to Data-Independent Acquisition MS data from plasma samples acquired on an Orbitrap™ Astral™ MS. Identified precursors were evaluated for linearity, specificity, repeatability, reproducibility, and intra-protein correlation from 11-point loading curves under three throughputs, to develop a resource for clinical-grade targeted assays. From a clinical cohort of individuals with inflammatory bowel disease (n=492), TEAQ successfully identified 1116 signature peptides for 327 quantifiable proteins from 1180 identified proteins. Embedding stringent selection criteria adaptable to targeted assay development into the analysis of discovery data will streamline the transition to validation and clinical studies.

2.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579929

RESUMEN

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis , Proteómica/métodos , Factores de Tiempo
3.
Nat Biotechnol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302753

RESUMEN

Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.

4.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38045259

RESUMEN

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence and structural context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

5.
J Am Soc Mass Spectrom ; 34(12): 2654-2661, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37922506

RESUMEN

Multispecific antibody constructs are quickly becoming more common constructs in biopharmaceuticals to improve specificity and efficacy. While the advent of this technology has led to improved therapeutics, its development has challenged the analytical tools through which these therapeutics are characterized. Moreover, new critical quality attributes, such as aggregation, have challenged the approaches to characterization even further. Herein, we describe a novel native subunit analysis using IdeS and IgdE analyzed by native size exclusion chromatography coupled with mass spectrometry to interrogate the mechanism of aggregation in a multispecific antibody. Digestion by IdeS and IdgE allows for the retention and detection of noncovalent interactions thereafter. Aggregation was localized to single-chain fragment variables (scFvs) wherein a domain swapping mechanism between VH1/VL2 and VH2/VL1 occurs.


Asunto(s)
Anticuerpos , Espectrometría de Masas/métodos , Cromatografía en Gel
6.
Anal Chem ; 95(42): 15656-15664, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815927

RESUMEN

The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer's acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometers.

7.
J Proteome Res ; 22(10): 3290-3300, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37683181

RESUMEN

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteínas Sanguíneas
8.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693476

RESUMEN

Background: The wide dynamic range of circulating proteins coupled with the diversity of proteoforms present in plasma has historically impeded comprehensive and quantitative characterization of the plasma proteome at scale. Automated nanoparticle (NP) protein corona-based proteomics workflows can efficiently compress the dynamic range of protein abundances into a mass spectrometry (MS)-accessible detection range. This enhances the depth and scalability of quantitative MS-based methods, which can elucidate the molecular mechanisms of biological processes, discover new protein biomarkers, and improve comprehensiveness of MS-based diagnostics. Methods: Investigating multi-species spike-in experiments and a cohort, we investigated fold-change accuracy, linearity, precision, and statistical power for the using the Proteograph™ Product Suite, a deep plasma proteomics workflow, in conjunction with multiple MS instruments. Results: We show that NP-based workflows enable accurate identification (false discovery rate of 1%) of more than 6,000 proteins from plasma (Orbitrap Astral) and, compared to a gold standard neat plasma workflow that is limited to the detection of hundreds of plasma proteins, facilitate quantification of more proteins with accurate fold-changes, high linearity, and precision. Furthermore, we demonstrate high statistical power for the discovery of biomarkers in small- and large-scale cohorts. Conclusions: The automated NP workflow enables high-throughput, deep, and quantitative plasma proteomics investigation with sufficient power to discover new biomarker signatures with a peptide level resolution.

9.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37398334

RESUMEN

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range. We also use a newly developed extra-cellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5,000 plasma proteins in a 60-minute gradient with the Orbitrap Astral mass spectrometer.

10.
Nat Commun ; 9(1): 2493, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950687

RESUMEN

Biomolecular mass spectrometry has matured strongly over the past decades and has now reached a stage where it can provide deep insights into the structure and composition of large cellular assemblies. Here, we describe a three-tiered hybrid mass spectrometry approach that enables the dissection of macromolecular complexes in order to complement structural studies. To demonstrate the capabilities of the approach, we investigate ribosomes, large ribonucleoprotein particles consisting of a multitude of protein and RNA subunits. We identify sites of sequence processing, protein post-translational modifications, and the assembly and stoichiometry of individual ribosomal proteins in four distinct ribosomal particles of bacterial, plant and human origin. Amongst others, we report extensive cysteine methylation in the zinc finger domain of the human S27 protein, the heptameric stoichiometry of the chloroplastic stalk complex, the heterogeneous composition of human 40S ribosomal subunits and their association to the CrPV, and HCV internal ribosome entry site RNAs.

11.
Nat Commun ; 9(1): 1713, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712889

RESUMEN

Robust manufacturing processes resulting in consistent glycosylation are critical for the efficacy and safety of biopharmaceuticals. Information on glycosylation can be obtained by conventional bottom-up methods but is often limited to the glycan or glycopeptide level. Here, we apply high-resolution native mass spectrometry (MS) for the characterization of the therapeutic fusion protein Etanercept to unravel glycoform heterogeneity in conditions of hitherto unmatched mass spectral complexity. Higher spatial resolution at lower charge states, an inherent characteristic of native MS, represents a key component for the successful revelation of glycan heterogeneity. Combined with enzymatic dissection using a set of proteases and glycosidases, assignment of specific glycoforms is achieved by transferring information from subunit to whole protein level. The application of native mass spectrometric analysis of intact Etanercept as a fingerprinting tool for the assessment of batch-to-batch variability is exemplified and may be extended to demonstrate comparability after changes in the biologic manufacturing process.

12.
RSC Adv ; 8(11): 6183-6191, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35539593

RESUMEN

The performance of the high-field MegaOrbitrap Fourier transform mass spectrometer (FT-MS) with electrospray ionization (ESI) was evaluated to perform petroleum sample characterization via classical petroleomics approaches. Pertinent parameters that underpin the main figures of merit, that is, signal to noise ratios, dynamic range, spectral error, scan speed, mass accuracy and mass resolving power = R p, and provide subsidies to develop these analyzers were tested. Comparisons are made with data obtained using the most common petroleomics instrument, which is a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), that has been used in the last decade in our laboratory for crude oil analysis providing R p of 340 000 at m/z 400 with transients of 3 s duration, and has been extensively demonstrated to fulfill all major requirements for precise petroleomics investigations. The high-field compact MegaOrbitrap mass analyzer, when operated at an R p = 840 000 at m/z 400 (R p > 1 000 000 at m/z 200) with a detection time of 3 s, was found to be well suited for adequate characterization of crude oil. Accurate class classification and mass accuracy below 1 ppm was obtained leading to proper, comprehensive petroleomics characterization.

13.
J Proteomics ; 175: 42-55, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28385662

RESUMEN

Top-down mass spectrometry (MS) strategies allow in-depth characterization of proteins by fragmentation of the entire molecule(s) inside a mass spectrometer without requiring prior proteolytic digestion. Importantly, the fragmentation techniques on commercially available mass spectrometers have become more versatile over the past decade, with different characteristics in regards to the type and wealth of fragment ions that can be obtained while preserving labile protein post-translational modifications. Due to these and other improvements, top-down MS has become of broader interest and has started to be applied in more disciplines, such as the quality control of recombinant proteins, analysis and characterization of biopharmaceuticals, and clinical biochemistry to probe protein forms as potential disease biomarkers. This article provides a technical overview and guidance for data acquisition strategies on the Orbitrap platform for single proteins and low complexity protein mixtures. A protein standard mixture composed of six recombinant proteins is also introduced and analysis strategies are discussed in detail. BIOLOGICAL SIGNIFICANCE: The article provides a detailed overview and guidance on how to choose from the variety of available methods for protein characterization by top-down analysis on the Orbitrap platform. Technical details are provided explaining important observations and phenomena when working with intact proteins and data from a number of different samples should serve to provide a solid understanding on how experiments were and should be setup and to set the right expectations on the outcome of these types of experiments. Additionally, a new intact protein standard sample is introduced that will help as a QC sample to check the instrument's hardware and method setup conditions as a requirement for obtaining high quality data from biologically relevant samples.


Asunto(s)
Fragmentos de Péptidos/análisis , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Recolección de Datos/normas , Procesamiento Proteico-Postraduccional , Proteómica/normas , Control de Calidad , Proteínas Recombinantes , Espectrometría de Masa por Ionización de Electrospray/normas
14.
J Proteomics ; 159: 67-76, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28242452

RESUMEN

The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~150kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds. SIGNIFICANCE OF THE STUDY: Compared with our previous report, the results presented herein demonstrate the power of technological advances of the next generation Orbitrap™ platform, including the use of a high-field compact (i.e., D20) Orbitrap mass analyzer, and a dedicated manipulation strategy for large protein ions (via their trapping in the HCD collision cell along with reduction of the pressure in the cell). Notably, these important developments became recently commercially available in the top-end Orbitrap platforms under the name of "Protein Mode". Furthermore, we continued exploring the advantages offered by the summation (averaging) of transients (time-domain data) for improving the signal-to-noise ratio of top-down mass spectra. Finally, for the first time we report the application of the hybrid ion activation technique that combines electron transfer dissociation and higher energy collisional dissociation, known as EThcD, on intact monoclonal antibodies. Under these specific instrumental parameters, EThcD produces a partially complementary fragmentation pattern compared to ETD, increasing the overall sequence coverage especially at the protein termini.


Asunto(s)
Adalimumab/química , Anticuerpos Monoclonales/química , Electrones , Espectrometría de Masas , Trastuzumab/química , Humanos , Panitumumab
15.
Anal Chem ; 89(2): 1202-1211, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27982570

RESUMEN

This Article introduces a new computationally efficient noise-tolerant signal processing method, referred to as phased spectrum deconvolution method (ΦSDM), designed for Fourier transform mass spectrometry (FT MS). ΦSDM produces interference-free mass spectra with resolution beyond the Fourier transform (FT) uncertainty limit. With a presumption that the oscillation phases are preserved, the method deconvolves an observed FT spectrum into a distribution of harmonic components bound to a fixed frequency grid, which is several times finer than that of FT. The approach shows stability under noisy conditions, and the noise levels in the resulting spectra are lower than those of the original FT spectra. Although requiring more computational power than standard FT algorithms, ΦSDM runs in a quasilinear time. The method was tested on both synthetic and experimental data, and consistently demonstrated performance superior to the FT-based methodologies, be it across the entire mass range or on a selected mass window of interest. ΦSDM promises substantial improvements in the spectral quality and the speed of FT MS instruments. It might also be beneficial for other spectroscopy approaches which require harmonic analysis for data processing.

16.
Nat Methods ; 13(4): 333-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901650

RESUMEN

Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.


Asunto(s)
Lípidos/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Humanos , Modelos Moleculares , Unión Proteica
17.
Mol Cell Proteomics ; 13(12): 3698-708, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25360005

RESUMEN

The quadrupole Orbitrap mass spectrometer (Q Exactive) made a powerful proteomics instrument available in a benchtop format. It significantly boosted the number of proteins analyzable per hour and has now evolved into a proteomics analysis workhorse for many laboratories. Here we describe the Q Exactive Plus and Q Exactive HF mass spectrometers, which feature several innovations in comparison to the original Q Exactive instrument. A low-resolution pre-filter has been implemented within the injection flatapole, preventing unwanted ions from entering deep into the system, and thereby increasing its robustness. A new segmented quadrupole, with higher fidelity of isolation efficiency over a wide range of isolation windows, provides an almost 2-fold improvement of transmission at narrow isolation widths. Additionally, the Q Exactive HF has a compact Orbitrap analyzer, leading to higher field strength and almost doubling the resolution at the same transient times. With its very fast isolation and fragmentation capabilities, the instrument achieves overall cycle times of 1 s for a top 15 to 20 higher energy collisional dissociation method. We demonstrate the identification of 5000 proteins in standard 90-min gradients of tryptic digests of mammalian cell lysate, an increase of over 40% for detected peptides and over 20% for detected proteins. Additionally, we tested the instrument on peptide phosphorylation enriched samples, for which an improvement of up to 60% class I sites was observed.


Asunto(s)
Espectrometría de Masas/instrumentación , Fosfoproteínas/aislamiento & purificación , Secuencia de Aminoácidos , Filtración , Análisis de Inyección de Flujo , Células HeLa , Humanos , Iones , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Fosforilación , Sensibilidad y Especificidad , Factores de Tiempo , Tripsina/química
18.
Anal Chem ; 86(14): 7017-22, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24940639

RESUMEN

An efficient approach to easy and reliable differentiation between isomeric leucine and isoleucine in peptide sequencing utilizes multistage electron transfer dissociation and higher energy collision activated dissociation in the Orbitrap Fusion mass spectrometer. The MS(3) method involves production and isolation of primary odd-electron z(•) ions, followed by radical site initiation of their fragmentation with formation of w-ions, characteristic of the isomeric amino acid residues. Six natural nontryptic peptides isolated from the secretion of frog Rana ridibunda were studied. Their lengths were in the range between 15 and 37 amino acids and the number of targeted isomeric (Leu/Ile) residues varied between 1 and 7. The experiments were successful in all 22 cases of Leu/Ile residues, leaving no doubts in identification. The method is extremely selective as the targeted w-ions appear to be the most intense in the spectra. The proposed approach may be incorporated into shotgun proteomics algorithms and allows for the development of an exclusively mass spectrometric method for automated complete de novo sequencing of various peptides and proteins.


Asunto(s)
Proteínas Anfibias/análisis , Isoleucina/análisis , Leucina/análisis , Espectrometría de Masas/métodos , Análisis de Secuencia de Proteína/instrumentación , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Animales , Péptidos Catiónicos Antimicrobianos/análisis , Isomerismo , Masculino , Datos de Secuencia Molecular , Rana ridibunda
19.
J Am Chem Soc ; 136(20): 7295-9, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24787140

RESUMEN

Accurate mass analysis can provide useful information on the stoichiometry and composition of protein-based particles, such as virus-like assemblies. For applications in nanotechnology and medicine, such nanoparticles are loaded with foreign cargos, making accurate mass information essential to define the cargo load. Here, we describe modifications to an Orbitrap mass spectrometer that enable high mass analysis of several virus-like nanoparticles up to 4.5 MDa in mass. This allows the accurate determination of the composition of virus-like particles. The modified instrument is utilized to determine the cargo load of bacterial encapsulin nanoparticles that were engineered to encapsulate foreign cargo proteins. We find that encapsulin packages from 8 up to 12 cargo proteins, thereby quantifying cargo load but also showing the ensemble spread. In addition, we determined the previously unknown stoichiometry of the three different splice variants of the capsid protein in adeno-associated virus (AAV) capsids, showing that symmetry is broken and assembly is heterogeneous and stochastic. These results demonstrate the potential of high-resolution mass analysis of protein-based nanoparticles, with widespread applications in chemical biology and nanotechnology.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Cápside/química , Dependovirus/química , Nanopartículas/química , Espectrometría de Masas
20.
Anal Chem ; 85(23): 11163-73, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24237199

RESUMEN

Native mass spectrometry (MS) is becoming an important integral part of structural proteomics and system biology research. The approach holds great promise for elucidating higher levels of protein structure: from primary to quaternary. This requires the most efficient use of tandem MS, which is the cornerstone of MS-based approaches. In this work, we advance a two-step fragmentation approach, or (pseudo)-MS(3), from native protein complexes to a set of constituent fragment ions. Using an efficient desolvation approach and quadrupole selection in the extended mass-to-charge (m/z) range, we have accomplished sequential dissociation of large protein complexes, such as phosporylase B (194 kDa), pyruvate kinase (232 kDa), and GroEL (801 kDa), to highly charged monomers which were then dissociated to a set of multiply charged fragmentation products. Fragment ion signals were acquired with a high resolution, high mass accuracy Orbitrap instrument that enabled highly confident identifications of the precursor monomer subunits. The developed approach is expected to enable characterization of stoichiometry and composition of endogenous native protein complexes at an unprecedented level of detail.


Asunto(s)
Espectrometría de Masas/métodos , Subunidades de Proteína/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/tendencias , Fosforilasa b/análisis , Fosforilasa b/química , Subunidades de Proteína/química , Proteómica/métodos , Proteómica/tendencias , Espectrometría de Masa por Ionización de Electrospray/tendencias , Espectrometría de Masas en Tándem/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...