Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 12: 666776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084139

RESUMEN

We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.

2.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784499

RESUMEN

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Daño del ADN , Isoxazoles/farmacología , Pirazinas/farmacología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/metabolismo , COVID-19/patología , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Células Vero
3.
Sci Transl Med ; 12(565)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33055240

RESUMEN

Defects in tumor-intrinsic interferon (IFN) signaling result in failure of immune checkpoint blockade (ICB) against cancer, but these tumors may still maintain sensitivity to T cell-based adoptive cell therapy (ACT). We generated models of IFN signaling defects in B16 murine melanoma observed in patients with acquired resistance to ICB. Tumors lacking Jak1 or Jak2 did not respond to ICB, whereas ACT was effective against Jak2 KO tumors, but not Jak1 KO tumors, where both type I and II tumor IFN signaling were defective. This was a direct result of low baseline class I major histocompatibility complex (MHC I) expression in B16 and the dependency of MHC I expression on either type I or type II IFN signaling. We used genetic and pharmacologic approaches to uncouple this dependency and restore MHC I expression. Through independent mechanisms, overexpression of NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) and intratumoral delivery of BO-112, a potent nanoplexed version of polyinosinic:polycytidylic acid (poly I:C), each restored the efficacy of ACT against B16-Jak1 KO tumors. BO-112 activated double-stranded RNA (dsRNA) sensing (via protein kinase R and Toll-like receptor 3) and induced MHC I expression via nuclear factor κB, independent of both IFN signaling and NLRC5. In summary, we demonstrated that in the absence of tumor IFN signaling, MHC I expression is essential and sufficient for the efficacy of ACT. For tumors lacking MHC I expression due to deficient IFN signaling, activation of dsRNA sensors by BO-112 affords an alternative approach to restore the efficacy of ACT.


Asunto(s)
Presentación de Antígeno , Interferón gamma , Animales , Humanos , Inmunoterapia , Péptidos y Proteínas de Señalización Intracelular , Janus Quinasa 1 , Ratones , FN-kappa B , Transducción de Señal
4.
Radiat Res ; 191(4): 323-334, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30730284

RESUMEN

Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.


Asunto(s)
Síndrome de Radiación Aguda/inmunología , Síndrome de Radiación Aguda/prevención & control , Sistema Hematopoyético/efectos de los fármacos , Sistema Hematopoyético/efectos de la radiación , Protectores contra Radiación/farmacología , Síndrome de Radiación Aguda/microbiología , Síndrome de Radiación Aguda/mortalidad , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de la radiación , Corazón/efectos de los fármacos , Corazón/efectos de la radiación , Masculino , Ratones , Neoplasias Inducidas por Radiación/inmunología , Neoplasias Inducidas por Radiación/microbiología , Neoplasias Inducidas por Radiación/mortalidad , Neoplasias Inducidas por Radiación/prevención & control , Sulfonamidas/farmacología , Análisis de Supervivencia
5.
PLoS One ; 12(7): e0181577, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28732024

RESUMEN

Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Piperazinas/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/efectos de la radiación
6.
Br J Pharmacol ; 173(18): 2726-38, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27352269

RESUMEN

BACKGROUND AND PURPOSE: Asthma manifests as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyperresponsiveness (AHR). Although the molecular mechanisms remain unclear, activation of specific PI3K isoforms mediate inflammation and AHR. We aimed to determine whether inhibition of PI3Kδ evokes dilation of airways and to elucidate potential mechanisms. EXPERIMENTAL APPROACH: Human precision cut lung slices from non-asthma donors and primary human airway smooth muscle (HASM) cells from both non-asthma and asthma donors were utilized. Phosphorylation of Akt, myosin phosphatase target subunit 1 (MYPT1) and myosin light chain (MLC) were assessed in HASM cells following either PI3K inhibitor or siRNA treatment. HASM relaxation was assessed by micro-pattern deformation. Reversal of constriction of airways was assessed following stimulation with PI3K or ROCK inhibitors. KEY RESULTS: Soluble inhibitors or PI3Kδ knockdown reversed carbachol-induced constriction of human airways, relaxed agonist-contracted HASM and inhibited pAkt, pMYPT1 and pMLC in HASM. Similarly, inhibition of Rho kinase also dilated human PCLS airways and suppressed pMYPT1 and pMLC. Baseline pMYPT1 was significantly elevated in HASM cells derived from asthma donors in comparison with non-asthma donors. After desensitization of the ß2 -adrenoceptors, a PI3Kδ inhibitor remained an effective dilator. In the presence of IL-13, dilation by a ß agonist, but not PI3K inhibitor, was attenuated. CONCLUSION AND IMPLICATIONS: PI3Kδ inhibitors act as dilators of human small airways. Taken together, these findings provide alternative approaches to the clinical management of airway obstruction in asthma.


Asunto(s)
Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Relación Estructura-Actividad
7.
Environ Toxicol Chem ; 35(5): 1148-58, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26387648

RESUMEN

Although interactions of metallic nanoparticles (NPs) with various microorganisms have been previously explored, few studies have examined how metal sensitivity impacts NP toxicity. The present study investigated the effects of copper NPs (Cu-NP) exposure on the model alga Chlamydomonas reinhardtii in the presence and absence of the essential micronutrient copper. The toxic ranges for Cu-NPs and the ionic control, CuCl2 , were determined using a high-throughput adenosine triphosphate (ATP)-based fluorescence assay. The Cu-NPs caused similar mortality in copper-replete and copper-deplete cells (median inhibitory concentration [IC50]: 14-16 mg/L) but were less toxic than the ionic control, CuCl2 (IC50: 7 mg/L). Using this concentration range, the Cu-NP impacts on cell morphology, copper accumulation, chlorophyll content, and expression of stress genes under both copper supply states were assessed. Osmotic swelling, membrane damage, and chloroplast and organelle disintegration were observed by transmission electron microscopy at both conditions. Despite these similarities, copper-deplete cells showed greater accumulation of loosely bound and tightly bound copper after exposure to Cu-NPs. Furthermore, copper-replete cells experienced greater loss of chlorophyll content, 19% for Cu-NPs, compared with only an 11% net decrease in copper-deplete cells. The tightly bound copper was bioavailable as assessed by reverse-transcriptase quantitative polymerase chain reaction analysis of CYC6, a biomarker for Cu deficiency. The increased resistance of copper-deplete cells to Cu-NPs suggests that these cells potentially metabolize excess Cu-NPs or better manage sudden influxes of ions. The results suggest that toxicity assessments must account for the nutritional status of impacted organisms and use toxicity models based on estimations of the bioavailable fractions.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Cobre/toxicidad , Nanopartículas del Metal/toxicidad , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Clorofila/metabolismo , Cloroplastos/metabolismo , Cobre/metabolismo , Orgánulos/ultraestructura , Ósmosis
8.
J Nucl Med ; 52(2): 231-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21233183

RESUMEN

UNLABELLED: The RET (rearranged-during-transfection protein) protooncogene triggers multiple intracellular signaling cascades regulating cell cycle progression and cellular metabolism. We therefore hypothesized that metabolic imaging could allow noninvasive detection of response to the RET inhibitor vandetanib in vivo. METHODS: The effects of vandetanib treatment on the full-genome expression and the metabolic profile were analyzed in the human medullary thyroid cancer cell line TT. In vitro, transcriptional changes of pathways regulating cell cycle progression and glucose, dopa, and thymidine metabolism were correlated to the results of cell cycle analysis and the uptake of (3)H-deoxyglucose, (3)H-3,4-dihydroxy-L-phenylalanine, and (3)H-thymidine under vandetanib treatment. In vivo, the tumor metabolism under vandetanib was monitored by small-animal PET of tumor-bearing mice. RESULTS: Vandetanib treatment resulted in the transcriptional downregulation of various effector pathways with consecutive downregulation of cyclin expression and a G(0)/G(1) arrest. In vitro, vandetanib treatment resulted in the decreased expression of genes regulating glucose, 3,4-dihydroxy-L-phenylalanine, and thymidine metabolism, with a subsequent reduction in the functional activity of the corresponding pathways. In vivo, metabolic imaging with PET was able to assess changes in the tumoral glucose metabolism profile as early as 3 d after initiation of vandetanib treatment. CONCLUSION: We describe a metabolic imaging approach for the noninvasive detection of successful vandetanib treatment. Our results suggest that PET may be useful for identifying patients who respond to vandetanib early in the course of treatment.


Asunto(s)
Piperidinas/uso terapéutico , Quinazolinas/uso terapéutico , Anciano , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Ciclinas/metabolismo , Dihidroxifenilalanina/metabolismo , Regulación hacia Abajo , Femenino , Fluorodesoxiglucosa F18 , Fase G1/efectos de los fármacos , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Análisis por Micromatrices , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-ret/genética , Control de Calidad , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Radiofármacos , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal/genética , Timidina/metabolismo , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Tomografía Computarizada de Emisión
9.
Am J Physiol Gastrointest Liver Physiol ; 298(1): G63-73, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19762431

RESUMEN

Rottlerin is a polyphenolic compound derived from Mallotus philipinensis. In the present study, we show that rottlerin decreased tumor size and stimulated apoptosis in an orthotopic model of pancreatic cancer with no effect on normal tissues in vivo. Rottlerin also induced apoptosis in pancreatic cancer (PaCa) cell lines by interacting with mitochondria and stimulating cytochrome c release. Immunoprecipitation results indicated that rottlerin disrupts complexes of prosurvival Bcl-xL with Bim and Puma. Furthermore, siRNA knockdown showed that Bim and Puma are necessary for rottlerin to stimulate apoptosis. We also showed that rottlerin and Bcl-2 and Bcl-xL inhibitor BH3I-2' stimulate apoptosis through a common mechanism. They both directly interact with mitochondria, causing increased cytochrome c release and mitochondrial depolarization, and both decrease sequestration of BH3-only proteins by Bcl-xL. However, the effects of rottlerin and BH3I-2' on the complex formation between Bcl-xL and BH3-only proteins are different. BH3I-2' disrupts complexes of Bcl-xL with Bad but not with Bim or Puma, whereas rottlerin had no effect on the Bcl-xL interaction with Bad. Also BH3I-2', but not rottlerin, required Bad to stimulate apoptosis. In conclusion, our results demonstrate that rottlerin has a potent proapoptotic and antitumor activity in pancreatic cancer, which is mediated by disrupting the interaction between prosurvival Bcl-2 proteins and proapoptotic BH3-only proteins. Thus rottlerin represents a promising novel agent for pancreatic cancer treatment.


Asunto(s)
Acetofenonas/farmacología , Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Benzamidas/farmacología , Línea Celular Tumoral , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Letal Asociada a bcl/metabolismo , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...