Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
World J Clin Cases ; 12(20): 4365-4371, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39015900

RESUMEN

BACKGROUND: Anti-contactin-associated protein-like 2 (CASPR2) antibody encephalitis is an autoimmune disorder characterized by the presence of antibodies against the voltage-gated potassium channel. This leads to neurological symptoms, such as seizures, cognitive decline, and neuropathic pain, primarily affecting the limbic system. The prognosis of this disorder varies among individuals. CASE SUMMARY: The patient, a girl aged nine years and nine months, underwent treatment for 14 to 21 d. The main clinical manifestations were vomiting and unclear consciousness, positive pathological signs, normal cranial computed tomography and magnetic resonance imaging, and abnormal electroencephalogram. The child was discharged after receiving immunoglobulin and hormone treatment. Subsequent follow-up over a period of 15 months after discharge, conducted through telephone and outpatient visits, showed no recurrence of symptoms. CONCLUSION: Anti-CASPR2 antibody autoimmune encephalitis in children is rare, mainly manifested as convulsions, mental abnormalities, cognitive impairment, and neuropathic pain, among others. Timely evaluation for autoimmune encephalitis antibodies is crucial, especially in cases of recurrent central nervous system involvement in children.

2.
Nano Lett ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994924

RESUMEN

With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.

3.
Sci Rep ; 14(1): 16102, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997305

RESUMEN

FVP is a polysaccharide extracted from Flammulina velutipes with immunomodulatory, anti-tumor, and anti-oxidation activities. In this study, we obtained the crude polysaccharide FVP-C from the water extract of Flammulina velutipes, and its main component FVP-S1 was obtained after further purification. Upon structural identification, we found that FVP-C is a neutral polysaccharide, and FVP-S1 was an acidic golden mushroom polysaccharide, consisting of glucuronic acid, xylose, and glucose. Lung adenocarcinoma (A549) was treated with FVP-S1 and FVP-C, respectively, and we found that FVP-S1 and FVP-C inhibited the proliferation and migration ability of tumor cells, as well as changed the morphology of the tumor cells and caused chromosome sheteropythosis, among which FVP-S1 had the best inhibition effect. The results of flow cytometry experiments and mitochondrial membrane potential, RT-qPCR, and Western blot showed that FVP-S1 and FVP-C were able to decrease the mitochondrial membrane potential, increase the expression level of apoptotic proteins Casepase-3 and Casepase-9 proteins, and at the same time, increase the ratio of Bax and Bcl-2, which promoted apoptosis of tumor cells. In conclusion, these data indicated that FVP-S1 and FVP-C were able to induce apoptosis in A549 cells through the mitochondrial pathway, which played an important role in inhibiting tumor cells.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Proliferación Celular , Flammulina , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Mitocondrias , Humanos , Flammulina/química , Apoptosis/efectos de los fármacos , Células A549 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Movimiento Celular/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Antineoplásicos/farmacología
4.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005471

RESUMEN

Sleep is indispensable for health and wellbeing, but its basic function remains elusive. The locus coeruleus (LC) powerfully promotes arousal by releasing noradrenaline. We found that noradrenaline transmission is reduced by prolonged wakefulness and restored during sleep. Fiber-photometry imaging of noradrenaline using its biosensor showed that its release evoked by optogenetic LC neuron activation was strongly attenuated by three hours of sleep deprivation and restored during subsequent sleep. This is accompanied by the reduction and recovery of the wake-promoting effect of the LC neurons. The reduction of both LC evoked noradrenaline release and wake-inducing potency is activity dependent, and the rate of noradrenaline transmission recovery depends on mammalian target of rapamycin (mTOR) signaling. The decline and recovery of noradrenaline transmission also occur in spontaneous sleep-wake cycles on a timescale of minutes. Together, these results reveal an essential role of sleep in restoring transmission of a key arousal-promoting neuromodulator.

5.
Medicine (Baltimore) ; 103(27): e38714, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968503

RESUMEN

This study analyzes and summarizes the assessment tools, current situation, and influencing factors of venous thromboembolism (VTE) prevention knowledge, attitudes, and practices (KAP) among patients. This study aimed to provide a reference basis for developing targeted health education plans and intervention strategies for patients to improve their knowledge and beliefs concerning VTE prevention. This study aimed to increase the implementation rate of VTE prevention measures and ultimately reduce the incidence of VTE.The current studies found that the factors influencing knowledge, attitude, and practice of VTE prevention in hospitalized patients include demographic factors (age, sex, education level, occupation), disease-related factors (treatment stage, injury site, and wards), and other factors (receiving VTE-related knowledge education and having medical workers at home).


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Hospitalización , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/prevención & control , Femenino , Masculino
7.
Cell ; 187(13): 3233-3235, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906100

RESUMEN

Somatic and sympathetic tones fluctuate together seamlessly across daily behaviors. In this issue of Cell, Zhang et al. describe populations of spinal projecting neurons in the rostral ventromedial medulla (rVMM) that harmonize somatic motor function and sympathetic activation. The coordinated regulation plays a vital role in supporting behaviors associated with various arousal states.


Asunto(s)
Tronco Encefálico , Bulbo Raquídeo , Publicaciones Periódicas como Asunto , Animales , Nivel de Alerta/fisiología , Sistema Nervioso Autónomo/fisiología , Tronco Encefálico/fisiología , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático/fisiología , Nervios Espinales/fisiología
8.
Fa Yi Xue Za Zhi ; 40(2): 118-127, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38847025

RESUMEN

In the study of age estimation in living individuals, a lot of data needs to be analyzed by mathematical statistics, and reasonable medical statistical methods play an important role in data design and analysis. The selection of accurate and appropriate statistical methods is one of the key factors affecting the quality of research results. This paper reviews the principles and applicable principles of the commonly used medical statistical methods such as descriptive statistics, difference analysis, consistency test and multivariate statistical analysis, as well as machine learning methods such as shallow learning and deep learning in the age estimation research of living individuals, and summarizes the relevance and application prospects between medical statistical methods and machine learning methods. This paper aims to provide technical guidance for the age estimation research of living individuals to obtain more scientific and accurate results.


Asunto(s)
Aprendizaje Automático , Humanos , Determinación de la Edad por el Esqueleto/métodos , Análisis Multivariante , Determinación de la Edad por los Dientes/métodos
9.
Int J Legal Med ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858273

RESUMEN

Monozygotic (MZ) twins cannot be distinguished using conventional forensic STR typing because they present identical STR genotypings. However, MZ twins do not always live in the same environment and often have different dietary and other lifestyle habits. Metabolic profiles are deyermined by individual characteristics and are also influenced by the environment in which they live. Therefore, they are potential markers capable of identifying MZ twins. Moreover, the production of proteins varies from organism to organism and is influenced by both the physiological state of the body and the external environment. Hence, we used metabolomics and proteomics to identify metabolites and proteins in peripheral blood to discriminate MZ twins. We identified 1749 known metabolites and 622 proteins in proteomic analysis. The metabolic profiles of four pairs of MZ twins revealed minor differences in intra-MZ twins and major differences in inter-MZ twins. Each pair of MZ twins exhibited distinct characteristics, and four metabolites-methyl picolinate, acesulfame, paraxanthine, and phenylbenzimidazole sulfonic acid-were observed in all four MZ twin pairs. These four differential exogenous metabolites conincidently show that the different external environments and life styles can be well distinguished by metabolites, considering that twins do not all have the same eating habits and living environments. Moreover, MZ twins showed different protein profiles in serum but not in whole blood. Thus, our results indicate that differential metabolites provide potential biomarkers for the personal identification of MZ twins in forensic medicine.

10.
J Med Biochem ; 43(2): 234-242, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38699697

RESUMEN

Background: It is an important clinical means to identify benign and malignant breast diseases caused by nipple discharge through the detection and analysis of components in nipple discharge. This study was aimed to test the expression and clinical significance of carbohydrate antigen 125 (CA125), carbohydrate antigen 153 (CA153) and carcinoembryonic antigen (CEA) in nipple discharge of breast cancer patients. Methods: From January 2017 to December 2018, 86 patients with invasive ductal carcinoma of the breast with nipple discharge (breast cancer group) and 50 patients with ordinary breast duct hyperplasia with nipple discharge (benign control group) were selected, and the levels of CA125, CA153 and CEA in nipple discharge and serum were detected by electrochemiluminescence immunoassay.

11.
Curr Zool ; 70(2): 195-203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38726248

RESUMEN

Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming. The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of oviparous species, but the physiological and biochemical basis of this developmental plasticity is largely unknown. In this study, we incubated eggs of the turtle Pelodiscus sinensis at low (24 °C), medium (28 °C), and high (32 °C) temperatures, and evaluated the effects of developmental temperature on offspring fitness, and metabolic enzymes in the neck and limb muscles of hatchlings. The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance (righting response and swimming capacity) and higher activities of metabolic enzymes (hexokinase, HK; lactate dehydrogenase, LDH) than hatchlings from the eggs incubated at high or low temperatures. In addition, the swimming speed and righting response were significantly correlated with the HK activities in limb (swimming speed) and neck (righting response) muscles, suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes. Integrating the fitness-related performance and the activities of metabolic enzymes, we predict that the P. sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32 °C.

12.
Biomed Environ Sci ; 37(2): 133-145, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582976

RESUMEN

Objective: Postoperative delirium (POD) has become a critical challenge with severe consequences and increased incidences as the global population ages. However, the underlying mechanism is yet unknown. Our study aimed to explore the changes in metabolites in three specific brain regions and saliva of older mice with postoperative delirium behavior and to identify potential non-invasive biomarkers. Methods: Eighteen-month-old male C57/BL6 mice were randomly assigned to the anesthesia/surgery or control group. Behavioral tests were conducted 24 h before surgery and 6, 9, and 24 h after surgery. Complement C3 (C3) and S100 calcium-binding protein B protein (S100beta) levels were measured in the hippocampus, and a metabolomics analysis was performed on saliva, hippocampus, cortex, and amygdala samples. Results: In total, 43, 33, 38, and 14 differential metabolites were detected in the saliva, hippocampus, cortex, and amygdala, respectively. "Pyruvate" "alpha-linolenic acid" and "2-oleoyl-1-palmitoy-sn-glycero-3-phosphocholine" are enriched in one common pathway and may be potential non-invasive biomarkers for POD. Common changes were observed in the three brain regions, with the upregulation of 1-methylhistidine and downregulation of D-glutamine. Conclusion: Dysfunctions in energy metabolism, oxidative stress, and neurotransmitter dysregulation are implicated in the development of POD. The identification of changes in the level of salivary metabolite biomarkers could aid in the development of noninvasive diagnostic methods for POD.


Asunto(s)
Delirio , Delirio del Despertar , Masculino , Animales , Ratones , Delirio del Despertar/complicaciones , Complicaciones Posoperatorias , Delirio/etiología , Delirio/diagnóstico , Delirio/epidemiología , Saliva , Biomarcadores , Encéfalo
13.
Conserv Biol ; : e14266, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578127

RESUMEN

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

14.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635634

RESUMEN

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
15.
Front Immunol ; 15: 1334479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680491

RESUMEN

Background: The immune microenvironment assumes a significant role in the pathogenesis of osteoarthritis (OA). However, the current biomarkers for the diagnosis and treatment of OA are not satisfactory. Our study aims to identify new OA immune-related biomarkers to direct the prevention and treatment of OA using multi-omics data. Methods: The discovery dataset integrated the GSE89408 and GSE143514 datasets to identify biomarkers that were significantly associated with the OA immune microenvironment through multiple machine learning methods and weighted gene co-expression network analysis (WGCNA). The identified signature genes were confirmed using two independent validation datasets. We also performed a two-sample mendelian randomization (MR) study to generate causal relationships between biomarkers and OA using OA genome-wide association study (GWAS) summary data (cases n = 24,955, controls n = 378,169). Inverse-variance weighting (IVW) method was used as the main method of causal estimates. Sensitivity analyses were performed to assess the robustness and reliability of the IVW results. Results: Three signature genes (FCER1G, HLA-DMB, and HHLA-DPA1) associated with the OA immune microenvironment were identified as having good diagnostic performances, which can be used as biomarkers. MR results showed increased levels of FCER1G (OR = 1.118, 95% CI 1.031-1.212, P = 0.041), HLA-DMB (OR = 1.057, 95% CI 1.045 -1.069, P = 1.11E-21) and HLA-DPA1 (OR = 1.030, 95% CI 1.005-1.056, P = 0.017) were causally and positively associated with the risk of developing OA. Conclusion: The present study identified the 3 potential immune-related biomarkers for OA, providing new perspectives for the prevention and treatment of OA. The MR study provides genetic support for the causal effects of the 3 biomarkers with OA and may provide new insights into the molecular mechanisms leading to the development of OA.


Asunto(s)
Biomarcadores , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/inmunología , Osteoartritis/diagnóstico , Transcriptoma , Predisposición Genética a la Enfermedad , Aprendizaje Automático , Polimorfismo de Nucleótido Simple
16.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496507

RESUMEN

Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep, but the underlying mechanism remains unclear. Optogenetic activation of locus coeruleus noradrenergic neurons immediately increased sleep propensity following transient wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused rapid declines of locus coeruleus calcium activity and noradrenaline release. This suggests that functional fatigue of noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.

17.
Sci Rep ; 14(1): 4459, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396064

RESUMEN

As the largest transporter family impacting on tumor genesis and development, the prognostic value of solute carrier (SLC) members has not been elucidated in colorectal cancer (CRC). We aimed to identify a prognostic signature from the SLC members and comprehensively analyze their roles in CRC. Firstly, we downloaded transcriptome data and clinical information of CRC samples from GEO (GSE39582) and TCGA as training and testing dataset, respectively. We extracted the expression matrix of SLC genes and established a prognostic model by univariate and multivariate Cox regression. Afterwards, the low-risk and high-risk group were identified. Then, the differences of prognosis traits, transcriptome features, clinical characteristics, immune infiltration and drug sensitivity between the two groups were explored. Furthermore, molecular subtyping was also implemented by non-negative matrix factorization (NMF). Finally, we studied the expression of the screened SLC genes in CRC tumor tissues and normal tissues as well as investigated the role of SLC12A2 by loss of function and gain of function. As a result, we developed a prognostic risk model based on the screened 6-SLC genes (SLC39A8, SLC2A3, SLC39A13, SLC35B1, SLC4A3, SLC12A2). Both in the training and testing sets, CRC patients in the high-risk group had the poorer prognosis and were in the more advanced pathological stage. What's more, the high-risk group were enriched with CRC progression signatures and immune infiltration. Two groups showed different drug sensitivity. On the other hand, two distinct subclasses (C1 and C2) were identified based on the 6 SLC genes. CRC patients in the high-risk group and C1 subtype had a worse prognosis. Furthermore, we found and validated that SLC12A2 was steadily upregulated in CRC. A loss-of-function study showed that knockdown of SLC12A2 expression restrained proliferation and stemness of CRC cells while a gain-of-function study showed the contrary results. Hence, we provided a 6-SLC gene signature for prognosis prediction of CRC patients. At the same time, we identified that SLC12A2 could promote tumor progression in CRC, which may serve as a potential therapeutic target.


Asunto(s)
Neoplasias Colorrectales , Miembro 2 de la Familia de Transportadores de Soluto 12 , Humanos , Algoritmos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Proteínas de Transporte de Membrana , Fenotipo , Pronóstico
18.
Int J Nanomedicine ; 19: 993-1016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299194

RESUMEN

Background: The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose: A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods: Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results: The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion: The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dexametasona/farmacología , Dexametasona/uso terapéutico , Fosfatos de Calcio/farmacología , Lípidos/efectos adversos
20.
Int J Biol Macromol ; 261(Pt 1): 129619, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272407

RESUMEN

Chronic pain constitutes an abnormal pain state that detrimentally affects the quality of life, daily activities, occupational performance, and stability of mood. Despite the prevalence of chronic pain, effective drugs with potent abirritation and minimal side effects remain elusive. Substantial studies have revealed aberrant activation of the matrix metalloproteinases (MMPs) in multiple chronic pain models. Additionally, emerging evidence has demonstrated that the downregulation of MMPs can alleviate chronic pain in diverse animal models, underscoring the unique and crucial role of MMPs in different stages and types of chronic pain. This review delves into the mechanistic insights and roles of MMPs in modulating chronic pain. The aberrant activation of MMPs has been linked to neuropathic pain through mechanisms involving myelin abnormalities in peripheral nerve and spinal dorsal horn (SDH), hyperexcitability of dorsal root ganglion (DRG) neurons, activation of N-methyl-d-aspartate receptors (NMDAR) and Ca2+-dependent signals, glial cell activation, and proinflammatory cytokines release. Different MMPs also contribute significantly to inflammatory pain and cancer pain. Furthermore, we summarized the substantial therapeutic potential of MMP pharmacological inhibitors across different types of chronic pain. Overall, our findings underscore the promising therapeutic prospects of MMPs targeting for managing chronic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/tratamiento farmacológico , Calidad de Vida , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuronas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Hiperalgesia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...