Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 22(1): 383, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301175

RESUMEN

BACKGROUND: Biomacromolecular structural data outgrew the legacy Protein Data Bank (PDB) format which the scientific community relied on for decades, yet the use of its successor PDBx/Macromolecular Crystallographic Information File format (PDBx/mmCIF) is still not widespread. Perhaps one of the reasons is the availability of easy to use tools that only support the legacy format, but also the inherent difficulties of processing mmCIF files correctly, given the number of edge cases that make efficient parsing problematic. Nevertheless, to fully exploit macromolecular structure data and their associated annotations such as multiscale structures from integrative/hybrid methods or large macromolecular complexes determined using traditional methods, it is necessary to fully adopt the new format as soon as possible. RESULTS: To this end, we developed PDBeCIF, an open-source Python project for manipulating mmCIF and CIF files. It is part of the official list of mmCIF parsers recorded by the wwPDB and is heavily employed in the processes of the Protein Data Bank in Europe. The package is freely available both from the PyPI repository ( http://pypi.org/project/pdbecif ) and from GitHub ( https://github.com/pdbeurope/pdbecif ) along with rich documentation and many ready-to-use examples. CONCLUSIONS: PDBeCIF is an efficient and lightweight Python 2.6+/3+ package with no external dependencies. It can be readily integrated with 3rd party libraries as well as adopted for broad scientific analyses.


Asunto(s)
Programas Informáticos , Bases de Datos de Proteínas , Europa (Continente) , Sustancias Macromoleculares , Estructura Molecular
2.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691821

RESUMEN

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Análisis por Conglomerados , Exactitud de los Datos , Europa (Continente) , Conformación Proteica , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 47(D1): D482-D489, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30445541

RESUMEN

The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts/) was established in 2002 and continues to operate as a collaboration between the Protein Data Bank in Europe (PDBe; http://pdbe.org) and the UniProt Knowledgebase (UniProtKB; http://uniprot.org). The resource is instrumental in the transfer of annotations between protein structure and protein sequence resources through provision of up-to-date residue-level mappings between entries from the PDB and from UniProtKB. SIFTS also incorporates residue-level annotations from other biological resources, currently comprising the NCBI taxonomy database, IntEnz, GO, Pfam, InterPro, SCOP, CATH, PubMed, Ensembl, Homologene and automatic Pfam domain assignments based on HMM profiles. The recently released implementation of SIFTS includes support for multiple cross-references for proteins in the PDB, allowing mappings to UniProtKB isoforms and UniRef90 cluster members. This development makes structure data in the PDB readily available to over 1.8 million UniProtKB accessions.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Análisis de Secuencia de Proteína , Animales , Enzimas/química , Humanos , Ratones , Anotación de Secuencia Molecular , Isoformas de Proteínas/química , Proteínas/fisiología , Proteoma/química
4.
Nucleic Acids Res ; 46(D1): D486-D492, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126160

RESUMEN

The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Gráficos por Computador , Bases de Datos como Asunto , Europa (Continente) , Humanos , Difusión de la Información , Internet , Modelos Moleculares , Anotación de Secuencia Molecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas/genética , Proteínas/metabolismo
5.
Nucleic Acids Res ; 44(D1): D385-95, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26476444

RESUMEN

The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Internet , Microscopía Electrónica , Modelos Moleculares , Interfaz Usuario-Computador
6.
Nucleic Acids Res ; 43(Database issue): D382-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348407

RESUMEN

Genome3D (http://www.genome3d.eu) is a collaborative resource that provides predicted domain annotations and structural models for key sequences. Since introducing Genome3D in a previous NAR paper, we have substantially extended and improved the resource. We have annotated representatives from Pfam families to improve coverage of diverse sequences and added a fast sequence search to the website to allow users to find Genome3D-annotated sequences similar to their own. We have improved and extended the Genome3D data, enlarging the source data set from three model organisms to 10, and adding VIVACE, a resource new to Genome3D. We have analysed and updated Genome3D's SCOP/CATH mapping. Finally, we have improved the superposition tools, which now give users a more powerful interface for investigating similarities and differences between structural models.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Estructura Terciaria de Proteína , Algoritmos , Genómica , Internet , Modelos Moleculares , Estructura Terciaria de Proteína/genética , Análisis de Secuencia de Proteína
7.
Nucleic Acids Res ; 43(Database issue): D479-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25313161

RESUMEN

The IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.uk/intact/complex), through which protein complexes from major model organisms are being collated and made available for search, viewing and download. It has been built in close collaboration with other bioinformatics services and populated with data from ChEMBL, MatrixDB, PDBe, Reactome and UniProtKB. Each entry contains information about the participating molecules (including small molecules and nucleic acids), their stoichiometry, topology and structural assembly. Complexes are annotated with details about their function, properties and complex-specific Gene Ontology (GO) terms. Consistent nomenclature is used throughout the resource with systematic names, recommended names and a list of synonyms all provided. The use of the Evidence Code Ontology allows us to indicate for which entries direct experimental evidence is available or if the complex has been inferred based on homology or orthology. The data are searchable using standard identifiers, such as UniProt, ChEBI and GO IDs, protein, gene and complex names or synonyms. This reference resource will be maintained and grow to encompass an increasing number of organisms. Input from groups and individuals with specific areas of expertise is welcome.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Animales , Sitios de Unión , Humanos , Internet , Sustancias Macromoleculares/química , Ratones , Unión Proteica , Proteínas/genética , Proteínas/metabolismo
8.
Nucleic Acids Res ; 42(Database issue): D285-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24288376

RESUMEN

The Protein Data Bank in Europe (pdbe.org) is a founding member of the Worldwide PDB consortium (wwPDB; wwpdb.org) and as such is actively engaged in the deposition, annotation, remediation and dissemination of macromolecular structure data through the single global archive for such data, the PDB. Similarly, PDBe is a member of the EMDataBank organisation (emdatabank.org), which manages the EMDB archive for electron microscopy data. PDBe also develops tools that help the biomedical science community to make effective use of the data in the PDB and EMDB for their research. Here we describe new or improved services, including updated SIFTS mappings to other bioinformatics resources, a new browser for the PDB archive based on Gene Ontology (GO) annotation, updates to the analysis of Nuclear Magnetic Resonance-derived structures, redesigned search and browse interfaces, and new or updated visualisation and validation tools for EMDB entries.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Gráficos por Computador , Europa (Continente) , Ontología de Genes , Internet , Resonancia Magnética Nuclear Biomolecular , Análisis de Secuencia de Proteína , Programas Informáticos
9.
Nucleic Acids Res ; 41(Database issue): D483-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23203869

RESUMEN

The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts) is a close collaboration between the Protein Data Bank in Europe (PDBe) and UniProt. The two teams have developed a semi-automated process for maintaining up-to-date cross-reference information to UniProt entries, for all protein chains in the PDB entries present in the UniProt database. This process is carried out for every weekly PDB release and the information is stored in the SIFTS database. The SIFTS process includes cross-references to other biological resources such as Pfam, SCOP, CATH, GO, InterPro and the NCBI taxonomy database. The information is exported in XML format, one file for each PDB entry, and is made available by FTP. Many bioinformatics resources use SIFTS data to obtain cross-references between the PDB and other biological databases so as to provide their users with up-to-date information.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Internet , Anotación de Secuencia Molecular , Conformación Proteica , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Integración de Sistemas
10.
Nucleic Acids Res ; 41(Database issue): D499-507, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23203986

RESUMEN

Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Genómica , Humanos , Internet , Anotación de Secuencia Molecular , Proteínas/química , Proteínas/clasificación , Proteínas/genética , Programas Informáticos
12.
Nucleic Acids Res ; 39(Database issue): D402-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21045060

RESUMEN

The Protein Data Bank in Europe (PDBe; pdbe.org) is actively involved in managing the international archive of biomacromolecular structure data as one of the partners in the Worldwide Protein Data Bank (wwPDB; wwpdb.org). PDBe also develops new tools to make structural data more widely and more easily available to the biomedical community. PDBe has developed a browser to access and analyze the structural archive using classification systems that are familiar to chemists and biologists. The PDBe web pages that describe individual PDB entries have been enhanced through the introduction of plain-English summary pages and iconic representations of the contents of an entry (PDBprints). In addition, the information available for structures determined by means of NMR spectroscopy has been expanded. Finally, the entire web site has been redesigned to make it substantially easier to use for expert and novice users alike. PDBe works closely with other teams at the European Bioinformatics Institute (EBI) and in the international scientific community to develop new resources with value-added information. The SIFTS initiative is an example of such a collaboration--it provides extensive mapping data between proteins whose structures are available from the PDB and a host of other biomedical databases. SIFTS is widely used by major bioinformatics resources.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Europa (Continente) , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Proteínas/clasificación , Proteínas/fisiología , Análisis de Secuencia de Proteína , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA