RESUMEN
BACKGROUND: The overexpression of the Protein Tyrosine Phosphatase 1B (PTP1B), a key role in the development of insulin resistance, diabetes (T2DM) and obesity, seems to have a substantial impact as a negative regulator of the insulin and leptin signaling pathways. Therefore, inhibiting PTP1B is a prospective therapeutic approach for the treatment of diabetes and obesity. However, the pyrazole scaffold is expected to be of significant pharmaceutical interest due to its broad spectrum of pharmacological actions. This study aims to focus on the significance of pyrazole scaffold in medicinal chemistry, the impact of PTP1B in diabetes and the therapeutic approach of pyrazole scaffold to treat T2DM. METHODS: A comprehensive analysis of the published literature in several pharmaceutical and medical databases, such as the Web of Science (WoS), PubMed, ResearchGate, ScienceDirect etc., were indeed successfully completed and classified accordingly. RESULTS: As reviewed, the various derivatives of the pyrazole scaffold exhibited prominent PTP1B inhibitory activity. The result showed that derivatives of oxadiazole and dibenzyl amine, chloro substituents, 1, 3-diaryl pyrazole derivatives with rhodanine-3-alkanoic acid groups, naphthalene and also 1, 3, 5-triazine-1H-pyrazole-triazolothiadiazole derivatives, octyl and tetradecyl derivative, indole- and N-phenylpyrazole-glycyrrhetinic acid derivatives with trifluoromethyl group, 2,3-pyrazole ring-substituted-4,4-dimethyl lithocholic acid derivatives with 4- fluoro phenyl substituted and additional benzene ring in the pyrazole scaffold significantly inhibits PTP1B. In silico study observed that pyrazole scaffold interacted with amino acid residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219. CONCLUSION: Diabetes is a metabolic disorder that elevates the risk of mortality and severe complications. PTP1B is a crucial component in the management of diabetes and obesity. As a result, PTP1B is a promising therapeutic target for the treatment of T2DM and obesity in humans. We concluded that the pyrazole scaffold has prominent inhibitory potential against PTP1B.
Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Pirazoles , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Humanos , Pirazoles/uso terapéutico , Pirazoles/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Animales , Relación Estructura-Actividad , Obesidad/tratamiento farmacológicoRESUMEN
A series of compounds was synthesized and characterized to explore new antimicrobial agents. These compounds were evaluated by using the agar cup plate method. The most active compound exhibited a zone of inhibition 18±0.09â mm and 19±0.09â mm against E. Coli and S. aureus, respectively. To gain insights into the intermolecular interactions, molecular docking studies were performed at the active site of the glucosamine fructose 6 phosphate synthase (GlcN 6 p) enzyme (PDB Id: 1XFF). The results of the molecular docking studies are in agreement with the pharmacological evaluation with potent compounds, exhibiting docking scores of -11.2. However, deformability, B-factor and covariance computations showed a result that the most active compound favored molecular connections with the protein. Therefore, our research is important for the development of antimicrobial agents.
Asunto(s)
Antiinfecciosos , Azetidinas , Antibacterianos/química , Simulación del Acoplamiento Molecular , Staphylococcus aureus , Escherichia coli , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Estructura MolecularRESUMEN
A series of twenty compounds (23-42) were synthesized and characterized by spectral studies in order to explore newer antimicrobial compounds. The majority of the synthesized compounds reported significant antimicrobial properties against various pathogenic bacterial and fungal strains with the help of tube dilution method. Significant activities (MIC ranging from 3.9 to 15.62â µg/ml) have been shown against Gram-negative and Gram-positive bacteria with. In contrast, moderate to outstanding antibacterial activity was reported versus Gram-negative bacteria such as E.â coli and P.â aeruginosa along with Gram-positive bacteria such as S.â aureus and B.â subtilis. While antifungal activity was moderate to excellent against two fungus strains (Candida tropicalis, Candida glabrata). Compounds 25 and 34 had the utmost activity versus Gram-positive and Gram-negative bacteria too. The antifungal activity of compound 35 was comparable to that of standard. In-silico Molecular docking evaluations were performed for antibacterial and antifungal activities against the target DNA gyrase A (PDB: 1AB4) and 14 alpha-sterol demethylase enzyme (PDB: 1EA1), respectively. The dock score for typicals compounds for antibacterial and antifungal activity were -4.733 and -9.4, respectively. The three-dimensional QSAR examination was carried out by multiple linear regression (SA-MLR) with good predictive power (r2=0.9105, q2=0.8011). Establishment of several interactions between the ligand 25 and 34 and the active site of residue of both receptors, enable the ligand 25 and 34 to be fit well in the pocket of the active site, as seen in Molecular dynamics simulations analysis. Thus, data suggest that these ligands could be further explored as potential precursors to develop antimicrobial drugs.
Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/química , Simulación del Acoplamiento Molecular , Escherichia coli , Ligandos , Staphylococcus aureus , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/farmacología , Hongos , Pruebas de Sensibilidad Microbiana , Relación Estructura-ActividadRESUMEN
AIMS: Diabetic patients are significantly stimulated by COVID-19 infection. The dreadful risk of COVID-19 mortality may be affected. In order to preserve precious lives, it is essential to comprehend how diabetes and COVID-19 are related, as well as how to manage diabetes. We aimed to focus on the mechanism, impact, and drug treatment of diabetes in COVID-19 patients. METHODS: A comprehensive scrutiny of the published literature in diverse pharmaceutical and medical databases such as Google Scholar, PubMed, Science Direct, DOAJ etc., were successfully conducted and classified accordingly. RESULTS: We discussed the severity of COVID-19 in diabetes patients. A patient with diabetes has a higher risk of COVID-19 mortality by influencing the development and prognosis of the disease. The recommended drugs for diabetes treatment in COVID-19 may reduce COVID-19 mortality. CONCLUSION: Metabolic syndrome diabetes is a risk factor enhancing the development and diagnosis of COVID-19. In order to treat diabetic patients who have COVID-19 infection, insulin is preferable over oral hypoglycemic medications.
Asunto(s)
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiología , Hipoglucemiantes/uso terapéutico , Factores de RiesgoRESUMEN
MATERIALS AND METHODS: Learning and memory functions in animals were evaluated by using Novel object recognition (NOR) and Morris water maze (MWM) tests. Following 7 days of LPS administration, animals were subjected to NOR test on Day-8 and MWM test on Days-9 to 13 for the assessment of recognition and spatial learning and memory, respectively. RESULTS: LPS administration produced significant deficits in recognition and spatial memory in mice after seven days of LPS administration. In LPS pre-treated mice, agmatine treatment on Day-8 resulted in the increased exploration to the novel object. Agmatine treatment (Day 8-12) in mice showed reduction in the escape latency and time spent in the target quadrant (probe trial) in the MWM test. However, co-administration of agmatine with LPS in mice for 7 days showed higher discrimination index in NOR test on Day-8. This co-administration also decreased escape latency and time spent in the target quadrant in MWM test on Days 9-13 as compared to LPS control group. CONCLUSION: Results implies the protective and curative effects of agmatine against LPS-induced loss of memory functions in experimental animals.HighlightsSubchronic but not acute lipopolysaccharides induce memory deficitsLipopolysaccharides impairs recognition and spatial memory in mice.Agmatine prevents lipopolysaccharides-induced loss of memory.Agmatine reverses deficits in learning and memory by lipopolysaccharides.
Asunto(s)
Agmatina , Lipopolisacáridos , Agmatina/farmacología , Agmatina/uso terapéutico , Animales , Hipocampo , Lipopolisacáridos/toxicidad , Aprendizaje por Laberinto , Memoria , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , RatonesRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Piperine, a main component of Piper longum Linn. and Piper nigrum Linn., is a plant alkaloid with a long history of medicinal use. Piperine exhibits antidepressant, hepatoprotective, anti-metastatic, anti-thyroid, immunomodulatory, antitumor and anti-inflammatory activities, However its therapeutic potential in amelioration of ulcerative colitis and the underlying mechanism for anti-inflammatory activity remains unknown.The objective of the present investigation was to unravel the therapeutic potential of piperine on amelioration of IBD using acetic acid induced experimental animal model for ulcerative colitis and to determine the role of TLR4 receptor in signalling pathway of inflammatory gene expression in ulcerative colitis. MATERIALS AND METHODS: We induced colitis using acetic acid (150µl of 5% once, intrarectally) in mice and estimated disease activity index (DAI), which took into account weight loss, stool consistency, and occult/gross bleeding. Colon length, spleen weights, ulcer area and ulcer index were measured; histological changes were observed by H&E staining. Effect of piperine on various antioxidant parameter of mice colon such as tissue myeloperoxidase (MPO) accumulation, SOD concentrations, reduced GSH and lipid peroxidation were determined. Pro-inflammatory mediators, namely, nitric oxide (NO), tumour necrosis factor-α (TNF-α) were determined by a TNF-α ELISA kit obtained from Thermo fisher scientific India Pvt. Ltd. Effect of piperine on haematological parameters of mice in acetic acid induced IBD was also determined which involves the estimation of FFA using a commercial free fatty acid fluorometric assay kit. RESULT: Piperine significantly attenuated acetic acid induced DAI score which implies that it suppresses weight loss, diarrhoea, gross bleeding and infiltration of immune cells. Piperine administration also effectively and dose dependently prevented shortening of colon length and enlargement of spleen size. Histological examination indicated that piperine reduces oedema in sub-mucosa, cellular infiltration, reduced haemorrhages and ulceration as compare to acetic acid induced colitis in mice. Furthermore piperine inhibited abnormal secretion of pro-inflammatory mediators namely NO, cytokines TNF-α and reduces FFA induced TLR4 mediated inflammation. CONCLUSION: These results suggest that piperine has an anti-inflammatory effect at colorectal sites that is due to down- regulations of the productions and expression of inflammatory mediators and it also reduces FFA induced TLR4 mediated inflammation. Thus it may have therapeutic potential on amelioration of IBD.