Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000059

RESUMEN

There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 µg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.


Asunto(s)
Anticonvulsivantes , Carbamazepina , Microbioma Gastrointestinal , Larva , Contaminantes Químicos del Agua , Animales , Larva/efectos de los fármacos , Carbamazepina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Anticonvulsivantes/farmacología , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos
2.
Nano Lett ; 24(17): 5342-5350, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630899

RESUMEN

CuInS2 (CIS) quantum dots (QDs) represent an important class of colloidal materials with broad application potential, owing to their low toxicity and unique optical properties. Although coating with a ZnS shell has been identified as a crucial method to enhance optical performance, the occurrence of cation exchange has historically resulted in the unintended formation of Cu-In-Zn-S alloyed QDs, causing detrimental blueshifts in both absorption and photoluminescence (PL) spectral profiles. In this study, we present a facile one-pot synthetic strategy aimed at impeding the cation exchange process and promoting ZnS shell growth on CIS core QDs. The suppression of both electron-phonon interaction and Auger recombination by the rigid ZnS shell results in CIS/ZnS core/shell QDs that exhibit a wide near-infrared (NIR) emission coverage and a remarkable PL quantum yield of 92.1%. This effect boosts the fabrication of high-performance, QD-based NIR light-emitting diodes with the best stability of such materials so far.

3.
Front Hum Neurosci ; 18: 1338765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415279

RESUMEN

Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.

4.
Chem Sci ; 15(4): 1449-1471, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38274053

RESUMEN

The expertise accumulated in deep neural network-based structure prediction has been widely transferred to the field of protein-ligand binding pose prediction, thus leading to the emergence of a variety of deep learning-guided docking models for predicting protein-ligand binding poses without relying on heavy sampling. However, their prediction accuracy and applicability are still far from satisfactory, partially due to the lack of protein-ligand binding complex data. To this end, we create a large-scale complex dataset containing ∼9 M protein-ligand docking complexes for pre-training, and propose CarsiDock, the first deep learning-guided docking approach that leverages pre-training of millions of predicted protein-ligand complexes. CarsiDock contains two main stages, i.e., a deep learning model for the prediction of protein-ligand atomic distance matrices, and a translation, rotation and torsion-guided geometry optimization procedure to reconstruct the matrices into a credible binding pose. The pre-training and multiple innovative architectural designs facilitate the dramatically improved docking accuracy of our approach over the baselines in terms of multiple docking scenarios, thereby contributing to its outstanding early recognition performance in several retrospective virtual screening campaigns. Further explorations demonstrate that CarsiDock can not only guarantee the topological reliability of the binding poses but also successfully reproduce the crucial interactions in crystalized structures, highlighting its superior applicability.

5.
ACS Omega ; 8(46): 44373, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027337

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.3c02701.].

6.
BMC Oral Health ; 23(1): 857, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957648

RESUMEN

BACKGROUND: To explore the relationship between changes in salivary cytokine levels and the occurrence of white spot lesions in adolescents receiving clear aligner orthodontic treatment and investigate the predictive value of various factors for lesion occurrence. METHODS: We retrospectively analyzed sixthy eight adolescent in the permanent dentition period, who received clear aligner orthodontics in our hospital were randomly divided into two groups according to the occurrence or aggravation of white spot lesions after treatment. The general condition of the oral cavity was analyzed, saliva was collected, and inflammation-related cytokines with varying transcription levels between groups were screened by transcriptome analysis. The expression levels of inflammatory cytokines in the saliva of the patients in the two groups were measured, and the risk factors for white spot lesions were screened by correlation analysis and binary logistic regression analysis. The value of the independent and combined application of risk factors for predicting the occurrence of white spot lesions in adolescent patients after invisible orthodontic treatment was analyzed by receiver operating characteristic (ROC) curve analysis. RESULTS: Transcriptome and GO and KEGG pathway analyses showed that there were differences in the transcription levels of inflammatory cytokines such as CXCL1, CXCL2, CXCL8, CCL3, CCL4, IL-1ß and IL-2 between groups. The levels of CXCL8, CCL3, CCL4, IL-1ß and IL-2 in the saliva of patients with white spot lesions were significantly higher in patients after invisible orthodontic treatment (P < 0.05). Correlation analysis and binary logistic regression analysis showed that elevated levels of CXCL8, IL-1ß and IL-2 were independent risk factors for the occurrence of white spot lesions (P < 0.05). CXCL8 had the highest independent predictive value for the occurrence of white spot lesions (AUC = 0.773, P < 0.05), and the combination of IL-1ß and IL-2 was also of high value in predicting the occurrence of white spot lesions. CONCLUSION: After invisible orthodontic treatment, the oral microenvironment, including inflammatory cytokine levels, in adolescent patients changes; in particular, the levels of inflammatory cytokines such as CXCLs and ILs change. CXCL8 expression is significantly associated with the occurrence of white spot lesions and is an important potential target for the prevention and treatment of white spot lesions in the future.


Asunto(s)
Caries Dental , Aparatos Ortodóncicos Removibles , Humanos , Adolescente , Caries Dental/prevención & control , Interleucina-2 , Estudios Retrospectivos , Citocinas
7.
Brain Sci ; 13(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37891761

RESUMEN

The eye region conveys considerable information regarding an individual's emotions, motivations, and intentions during interpersonal communication. Evidence suggests that the eye regions of an individual expressing emotions can capture attention more rapidly than the eye regions of an individual in a neutral affective state. However, how attentional resources affect the processing of emotions conveyed by the eye regions remains unclear. Accordingly, the present study employed a dual-target rapid serial visual presentation task: happy, neutral, or fearful eye regions were presented as the second target, with a temporal lag between two targets of 232 or 696 ms. Participants completed two tasks successively: Task 1 was to identify which species the upright eye region they had seen belonged to, and Task 2 was to identify what emotion was conveyed in the upright eye region. The behavioral results showed that the accuracy for fearful eye regions was lower than that for neutral eye regions under the condition of limited attentional resources; however, accuracy differences across the three types of eye regions did not reach significance under the condition of adequate attentional resources. These findings indicate that preferential processing of fearful expressions is not automatic but is modulated by available attentional resources.

8.
BMC Pediatr ; 23(1): 516, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845615

RESUMEN

Sepsis is a life-threatening multiple-organ injury caused by disordered host immune response to microbial infection. However, the correlation between gut microbiota dysbiosis and immune indicators remains unexplored. To address this gap in knowledge, we carried out 16 S rDNA sequencing, analyzed clinical fecal samples from children with sepsis (n = 30) and control children (n = 25), and obtained immune indicators, including T cell subtypes (CD3+, CD3+CD4+, CD3+CD8+, and CD4/CD8), NK cells, cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ), and immunoglobulin indices (IgA, IgE, IgM and IgG). In addition, we analyzed the correlation between gut microbiota dysbiosis and immune indicators, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. We found that children with sepsis exhibited gut bacterial dysbiosis and low alpha diversity. The Spearman's rank correlation coefficient suggested that Rhodococcus erythropolis had a significantly positive correlation with IFN-γ and CD3+ T cells. Klebsiella pneumoniae and Streptococcus mitis were significantly correlated with NK cells. Bacteroides uniformis was significantly positively correlated with IgM and erythrocyte sedimentation rate, and Eubacterium eligens was significantly positively correlated with IL-4 and CD3+CD8+ T cells. The biomarkers discovered in this study had strong discriminatory power. These changes in the gut microbiome may be closely related to immunologic dysfunction and to the development or exacerbation of sepsis. However, a large sample size is required for verification.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Humanos , Niño , Microbioma Gastrointestinal/fisiología , Linfocitos T CD8-positivos , Disbiosis , Interleucina-4 , Bacterias/genética , Biomarcadores , Inmunoglobulina M
9.
Ecotoxicol Environ Saf ; 267: 115617, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866109

RESUMEN

The antidiabetic pharmaceutical metformin (MET) is largely unmetabolized by the human body. Its residues are readily detectable in various aquatic environments and may have adverse impacts on the growth and survival of aquatic species. To date, its toxicological effects have scarcely been explored in non-fish species. Here, we exposed the tadpoles of black-spotted pond frog (Pelophylax nigromaculatus) to different concentrations (0, 1, 10 and 100 µg/L) of MET for 30 days and measured the body size, intestinal microbiota and metabolites to evaluate potential effects of MET exposure in amphibian larvae. MET exposure did not affect the growth and intestinal microbial diversity of tadpoles. However, intestinal microbial composition changed significantly, with some pathogenic bacteria (e.g., bacterial genera Salmonella, Comamonas, Stenotrophomonas, Trichococcus) increasing and some beneficial bacteria (e.g., Blautia, Prevotella) decreasing in MET-exposed tadpoles. The levels of some intestinal metabolites associated with growth and immune performance also changed significantly following MET exposure. Overall, our results indicated that exposure to MET, even at environmentally relevant concentrations, would cause intestinal microbiota dysbiosis and metabolite alteration, thereby influencing the health status of non-target aquatic organisms, such as amphibians.


Asunto(s)
Microbioma Gastrointestinal , Metformina , Humanos , Animales , Metformina/toxicidad , Anuros , Hipoglucemiantes , Disbiosis , Larva
10.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37561576

RESUMEN

The nucleus accumbens (NAc) is the most promising target for drug use disorder treatment. Deep brain stimulation (DBS) of NAc is effective for drug use disorder treatment. However, the mechanisms by which DBS produces its therapeutic effects remain enigmatic. Here, we define a behavioral cutoff criterion to distinguish depressive-like behaviors and non-depressive-like behaviors in mice after morphine withdrawal. We identified a basolateral amygdala (BLA) to NAc D1 medium spiny neuron (MSN) pathway that controls depressive-like behaviors after morphine withdrawal. Furthermore, the paraventricular nucleus of thalamus (PVT) to NAc D2 MSN pathway controls naloxone-induced acute withdrawal symptoms. Optogenetically induced long-term potentiation with κ-opioid receptor (KOR) antagonism enhanced BLA to NAc D1 MSN signaling and also altered the excitation/inhibition balance of NAc D2 MSN signaling. We also verified that a new 50 Hz DBS protocol reversed morphine withdrawal-evoked abnormal plasticity in NAc. Importantly, this refined DBS treatment effectively alleviated naloxone-induced withdrawal symptoms and depressive-like behaviors and prevented stress-induced reinstatement. Taken together, the results demonstrated that input- and cell type-specific synaptic plasticity underlies morphine withdrawal, which may lead to novel targets for the treatment of opioid use disorder.


Asunto(s)
Analgésicos Opioides , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Analgésicos Opioides/farmacología , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2 , Morfina/efectos adversos , Naloxona/farmacología , Naloxona/metabolismo , Síndrome de Abstinencia a Sustancias/terapia , Receptores de Dopamina D1/metabolismo , Ratones Endogámicos C57BL
11.
ACS Omega ; 8(30): 27323-27332, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546631

RESUMEN

At present, polyethylene pipeline is widely used in urban gas projects, but a relatively mature and reliable nondestructive testing technology has not been formed. Therefore, it is urgent to develop a new nondestructive testing technology to meet the increasing demand for inspection of non-metallic pipes. The terahertz testing technology and related equipment have played an increasingly important role in the nondestructive testing of many nonmetallic structures, but they have not been applied to polyethylene (PE) pipes. In this work, terahertz time-domain spectroscopy was used to detect prefabricated defects inside the PE pipe specimens. The results show that the terahertz nondestructive testing technology can be used to detect common defects in nonblack PE pipes with a detection error of less than 10%. Higher-power terahertz devices can detect defects in black PE pipe, while lower-power terahertz devices cannot. Because the black PE pipe contains carbon and has a strong absorption of terahertz waves. The penetration of lower-power terahertz devices to the black PE pipe is not enough, resulting in a low resolution of the imaging. The results of this work may promote the progress of the nondestructive testing technology of nonmetallic pipelines.

12.
J Cancer Res Clin Oncol ; 149(15): 13995-14014, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37543978

RESUMEN

BACKGROUND: Colorectal cancer is the second leading cause of cancer-related deaths, which imposes a significant societal burden. Regular screening and emerging molecular tumor markers have important implications for detecting the progression and development of colorectal cancer. Disulfidptosis is a newly defined type of programmed cell death triggered by abnormal accumulation of disulfide compounds in cells that stimulate disulfide stress. Currently, there is no relevant discussion on this mechanism and colorectal cancer. METHODS: We classified the disulfidptosis-related subtypes of colorectal cancer using bioinformatics methods. Through secondary clustering of differentially expressed genes between subtypes, we identified characteristic genes of the disulfidptosis subtype, constructed a prognostic model, and searched for potential biomarkers through clinical validation. RESULTS: Using disulfidptosis-related genes collected from the literature, we classified colorectal cancer patients from public databases into three subtypes. The differentially expressed genes between subtypes were clustered into three gene subtypes, and eight characteristic genes were screened to construct a prognostic model. CONCLUSION: The disulfidptosis mechanism has important value in the classification of colorectal cancer patients, and characteristic genes selected based on this mechanism can serve as a new potential biological marker for colorectal cancer.

13.
Brain Res ; 1812: 148407, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182687

RESUMEN

DNA methylation is one of the epigenetic mechanisms involved in opioid use disorder. GAD2 is a key catalyticase in gamma amino butyric acid (GABA) synthesis from glutamate, that is implicated in opioid-induced rewarding effect. To reveal the relationship and the underlying mechanism between GAD2 gene methylation and opioid use disorder, we first examined and compared the methylation levels in the promoter region of the GAD2 gene in peripheral blood between 120 patients with opioid use disorder and 110 healthy controls by using a targeted approach. A diagnostic model with methylation biomarkers was established to distinguish opioid use disorder and healthy control groups. Correlations between methylation levels in the promoter region of the GAD2 gene and the duration and dosage of opioid use were then determined. Finally, the transcription factors that potentially bind to the target sequences including the detected CpG sites were predicted with the JASPAR database. Our results demonstrated that hypermethylation in the promoter region of the GAD2 gene was associated with opioid use disorder. A diagnostic model based on 10 methylation biomarkers could distinguish the opioid use disorder and healthy control groups. Several correlations between methylation levels in the GAD2 gene promoter and the duration and dosage of opioid use were observed. Transcription factors TFAP2A, Arnt and Runx1 were predicted to bind to the target sequences including several CpG sites detected in the present study in the GAD2 gene promoter. Our findings highlight and extend the role of DNA methylation in the GAD2 gene in opioid use disorder.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Humanos , Metilación de ADN , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Trastornos Relacionados con Opioides/genética , Islas de CpG
14.
Biomolecules ; 13(4)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37189431

RESUMEN

Antisense long noncoding RNA (as-lncRNA) is a lncRNA transcribed in reverse orientation that is partially or completely complementary to the corresponding sense protein-coding or noncoding genes. As-lncRNAs, one of the natural antisense transcripts (NATs), can regulate the expression of their adjacent sense genes through a variety of mechanisms, affect the biological activities of cells, and further participate in the occurrence and development of a variety of tumours. This study explores the functional roles of as-lncRNAs, which can cis-regulate protein-coding sense genes, in tumour aetiology to understand the occurrence and development of malignant tumours in depth and provide a better theoretical basis for tumour therapy targeting lncRNAs.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinogénesis/genética
15.
Asian J Androl ; 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36891937

RESUMEN

Accumulating evidence has revealed many clues that regular aerobic exercise benefits brain health and behaviors. The aims of this study were to explore the effect of aerobic exercise on ejaculatory behaviors, as well as to make a preliminary assessment of aerobic exercise as a complementary strategy to dapoxetine treatment in rapid ejaculators. Copulatory tests of rats and a treadmill training protocol were performed in this study. In total, 12 rapid ejaculators were selected on the basis of ejaculation distribution theory and randomly assigned to 4 groups: control (Ctrol) group, aerobic exercise (Ex) group, dapoxetine (Dapo) group, and Ex+Dapo group. We evaluated the changes in ejaculatory parameters in the 4 groups. Variations in biological markers, including serum corticosterone, serotonin (5-HT), and brain-derived neurotrophic factor (BDNF) of the raphe nucleus, were determined by enzyme-linked immunosorbent assay (ELISA). The primary finding of our study was that both aerobic exercise and acute dapoxetine could enhance ejaculation control and prolong ejaculation latency in rapid ejaculator rats. The ejaculation delay effect of aerobic exercise was nearly equivalent to that of acute dapoxetine. In addition, both aerobic exercise and dapoxetine treatment could lead to increased expression of BDNF and 5-HT in the raphe nucleus of rapid ejaculators. Moreover, the two interventions, when applied together, may further upregulate the expression of BDNF-5-HT duo in a complementary manner. This study highlights the positive effects of aerobic exercise on ejaculation control. Regular aerobic exercise might be a promising complementary treatment to dapoxetine in rats.

16.
World J Microbiol Biotechnol ; 39(5): 116, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918451

RESUMEN

Vibrio splendidus is a ubiquitous pathogen that causes various diseases in aquaculture with a wide range of hosts. In our previous studies, we showed that L-glutamic acid was the optimal carbon source that could revive V. splendidus persister cells. In our present study, single cell observation under microscopy showed that V. splendidus could revive using L-glutamic acid as carbon source. A proteomic analysis was carried out to further illustrate the initial wake up of persister cells with L-glutamic acid. To collect the initially revived cells, SDS-PAGE was used to determine the revived time. The total proteins from the persister cells and the revived cells were analyzed using LC‒MS/MS. A total of 106 proteins, including 42 downregulated proteins and 64 upregulated proteins, were identified. GO analysis of the differentially expressed proteins (DEPs) showed that biological processes, including protein complex assembly, protein oligomerization, and arginine metabolism; cellular components, including extracellular membrane, plasma membrane and ribosome; and molecular functions, including the activities of arginine binding and structural constituent of ribosome, were enriched. KEGG analysis showed that lipopolysaccharide biosynthesis, porphyrin and chlorophyll metabolism, and peptidoglycan biosynthesis were upregulated, while the ribosome was downregulated. This is the first time to study the initial wake up of persister cells based on proteomic analysis, and the results revealed the main pathways involved in the early resuscitation of V. splendidus persister cells.


Asunto(s)
Ácido Glutámico , Vibrio , Ácido Glutámico/metabolismo , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Vibrio/metabolismo , Proteínas/metabolismo , Arginina/metabolismo
17.
ACS Omega ; 8(7): 6402-6410, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844554

RESUMEN

Compressor outlets are subject to high temperatures and vibrations; when pipelines are subject to such conditions, degradation of the anticorrosive layer on the pipeline is likely. Fusion-bonded epoxy (FBE) powder coating is the most common type of anticorrosion coatings on compressor outlet pipelines. It is necessary to study the reliability of anticorrosive layers in compressor outlet pipelines. In this paper, a service reliability test method for the corrosion-resistant coatings of compressor outlet pipelines of natural gas stations is proposed. Testing involving the simultaneous exposure of the pipeline to high temperatures and vibrations is conducted to evaluate, on a compressed timescale, the applicability and service reliability of FBE coatings. The failure mechanism of FBE coatings exposed to high temperatures and vibrations is analyzed. It is found that, due to the influence of initial imperfections in the coatings, FBE anticorrosion coatings typically do not meet the standard requirements for use in compressor outlet pipelines. After simultaneous exposure to high temperatures and vibrations, the impact resistance, abrasion resistance, and bending resistance of the coatings are found not to meet the requirements for their intended applications. It is therefore suggested that FBE anticorrosion coatings be used with extreme caution in compressor outlet pipelines.

18.
Aquat Toxicol ; 256: 106415, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746075

RESUMEN

The ecotoxicological and environmental impacts of glyphosate-based herbicides have received considerable attention due to their extensive use globally. However, the potential for adverse effects in cultured non-fish vertebrate species are commonly ignored. In this study, effects on growth, indicators of functional performance, gut microbial diversity, liver antioxidant responses and metabolite profiles were evaluated in soft-shelled turtle hatchlings (Pelodiscus sinensis) exposed to different concentrations of glyphosate-isopropylammonium (0, 0.02, 0.2, 2 and 20 mg/L). No significant changes in growth or functional performance (food intake, swimming speed), gut microbiota, and liver antioxidant responses (SOD and CAT activities, MDA content) were observed in exposed turtles. However, hepatic metabolite profiles revealed distinct perturbations that primarily involved amino acid metabolism in turtles exposed to environmentally relevant concentrations. Overall, our results suggested that metabolite profiles may be more sensitive than phenotypic or general physiological endpoints and gut microbiota profiling, and indicate a potential mechanism of hepatotoxicity caused by glyphosate-isopropylammonium based on untargeted metabolomics analysis. Furthermore, the toxicity of glyphosate at environmentally relevant concentrations might be relatively minor in aquatic turtle species.


Asunto(s)
Tortugas , Contaminantes Químicos del Agua , Animales , Antioxidantes , Contaminantes Químicos del Agua/toxicidad , Glicina/toxicidad , Glifosato
19.
J Org Chem ; 88(6): 3539-3554, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36825676

RESUMEN

The traditional methods for the synthesis of phosphinate esters use phosphorus trichloride (PCl3) as the phosphorous source, resulting in procedures that are often highly polluting and energy intensive. The search for an alternative approach that is both mild and environmentally friendly is a challenging, yet highly rewarding task in modern chemistry. Herein, we use an inorganic phosphorous-containing species, NaH2PO2, to serve as the source of phosphorous that participates directly in the nickel-catalyzed selective alkyne hydrophosphonylation reaction. The transformation was achieved in a multicomponent fashion and at room temperature, and most importantly, the H-phosphinate product generated is an advanced intermediate which can be readily converted into diverse phosphinate derivatives, including those bearing new P-C, P-S, P-N, P-Se, and P-O bonds, thus providing a complimentary method to classic phosphinate ester synthesis techniques.

20.
J Phys Chem Lett ; 14(1): 245-252, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36594895

RESUMEN

Understanding carrier recombination processes in MAPb(BrxCl1-x)3 crystals is essential for their photoelectrical applications. In this work, carrier recombination dynamics in MAPb(BrxCl1-x)3 single crystals were studied by steady-state photoluminescence (PL), time-resolved photoluminescence (TRPL), and time-resolved microwave photoconductivity (TRMC). By comparing TRPL and TRMC, we find TRPL of MAPb(BrxCl1-x)3 (x < 0.98) single crystals is dominated by a hole trapping process while the long-lived component of TRMC is dominated by an electron trapping process. We also find both electron and hole trapping rates of MAPb(BrxCl1-x)3 (x < 0.98) crystals decrease with an increase in Br content. A temperature-dependent PL study shows there are shallow trap states besides the deep level trap states in the MAPb(Br0.82Cl0.18)3 crystal. The activation energy for holes in shallow trap states detrapped into the valence band is ∼0.1 eV, while the activation energy for free holes to be trapped into deep trap states is ∼0.4 eV. This work provides insight into carrier recombination processes in MAPb(BrxCl1-x)3 single crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...