Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38918978

RESUMEN

INTRODUCTION: The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs. METHOD: The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability. RESULTS: The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months. CONCLUSION: At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

2.
Eur J Pharm Biopharm ; 201: 114381, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917948

RESUMEN

The solidification of deep eutectic solvent (DES) through wet impregnation techniques on inert solid carriers is an interesting approach that offers better processing attributes and excellent stability. Herein, DES of Fimasartan (FS) was developed to improve its solubility and bioavailability. The selected DES-FS was solidified by wet impregnation method employing Nesulin US2 and Aerosil 200. The SeDeM-SLA (solid-liquid adsorption) system was employed to investigate flow attributes of solidified DES-FS. Further, the selected solidified DES-FS (A) was characterized by Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM). The DES comprising Choline Chloride (ChCl): Glycerol (Gly) (1:3) revealed maximum drug solubility (35.6 ± 2.2 mg/mL) and thus opted for solidification. Solidification through wet impregnation was employed using 1:0.5 ratios (DES-FS to carriers). The Index of Good Flow (IGF) value was calculated from the SeDeM-SLA expert system, which indicates the better flow characteristics of solidified DES-FS, particularly with Neusilin US2 [SDES-FS (A)]. The solid-state evaluation data of SDS-FS (A) suggested a transition of FS to an amorphous form, resulting in an increment in solubility and dissolution. A similar trend was reported in the in vivo pharmacokinetic study, which indicated a 2.9 folds increment in the oral bioavailability of FS. Furthermore, excellent stability, i.e., a shelf life of 28.44 months, reported by SDES-FS (A) in accelerated stability studies, suggests better formulation perspectives. In a nutshell, the present study evokes the potentiality of performing solidification through wet impregnation and successful implementation of the SeDeM-SLA expert model, which could find wide applications in pharmaceutical science.


Asunto(s)
Disponibilidad Biológica , Pirimidinas , Solubilidad , Solventes , Tetrazoles , Solventes/química , Animales , Tetrazoles/química , Tetrazoles/administración & dosificación , Tetrazoles/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/administración & dosificación , Rastreo Diferencial de Calorimetría/métodos , Ratas , Masculino , Compuestos de Bifenilo/química , Química Farmacéutica/métodos , Difracción de Rayos X/métodos , Composición de Medicamentos/métodos , Glicerol/química , Portadores de Fármacos/química , Colina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estabilidad de Medicamentos , Microscopía Electrónica de Rastreo/métodos
3.
ACS Omega ; 8(14): 12820-12829, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065077

RESUMEN

Recently, the applications of deep eutectic solvents (DESs) as green and sustainable solvents for the solubilization of functional foods and phytophenols have dramatically risen concerning global issues on the utilization of organic solvents. Nevertheless, developing a suitable DES system for phytocomponents to enhance its solubility and bioavailability is complex and requires a sound experimental setup. Herein, we have attempted to develop DES encompassing the choline chloride (ChCl) along with oxalic acid (OA), l-glutamine (l-Glu), urea (U), and glycerol (Gro) at different ratios to elicit the solubility and bioavailability of naringin (NAR). Several DES systems were designed and tested for solubility, kinematic viscosity, and pH. Among these, DES-NAR encompassing ChCl/Gro in a 1:3 ratio exhibited the maximum solubility of NAR (232.56 ± 7.1 mg/mL) and neutral characteristic and thus considered suitable for NAR. Further, the conductor-like screening model for real solvents (COSMO-RS) has been employed to estimate the molecular and electrostatic interactions. DES-NAR was evaluated by polarized optical microscopy, Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), and 1H NMR to investigate the molecular transition and interaction. Further, diffusion and permeability studies were performed, which suggest significant improvements in DES-NAR. Likewise, the pharmacokinetic studies revealed a two times increase in the oral bioavailability of NAR in a designed DES system. Thus, the work represents a systematic and efficient development of the DES system for a potential phytocomponent considering the biosafety impact, which may widen the interest in pharmaceutical and food sciences.

4.
Recent Adv Drug Deliv Formul ; 17(1): 3-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36579389

RESUMEN

Deep eutectic solvents (DESs) containing bioactive have been explored as potential choices for therapeutic efficiency enhancement. DESs are regarded as superior compared to established solvents owing to accessibility, storage conditions, synthesis, and low cost. As such, intensive research has taken place in different disciplines, especially nutraceuticals, foods and pharmaceuticals. The applications of DESs, especially in nutraceuticals and pharmaceutical delivery, have shown great promise. Despite these different successes, the safety issues of these DESs need to be properly identified. A safe mixture of DESs must be developed to take its broad range of advantages to the nutraceutical industry, and, therefore, its nutraceutical applications can only be introduced if DESs are known to have profiles of negligible or minimal toxicity. This review emphasizes the fundamental aspects needed to have a better understanding of DESs. It covers the current prospects of DES, including types, properties, formulation components and characterization methods. The several characterization methods, viz., pH, density, refractive index, viscosity, surface tension, solubility, polarized optical microscopy, x-ray diffraction studies, Fourier transforms infrared spectroscopy, and nuclear magnetic resonance spectroscopy are also mentioned. Further, the promising applications of DESs in different nutraceutical and pharmaceutical domains are highlighted.


Asunto(s)
Disolventes Eutécticos Profundos , Alimentos , Solventes/química , Preparaciones Farmacéuticas , Industrias
5.
AAPS PharmSciTech ; 23(4): 110, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411421

RESUMEN

We report herein the design of a solid self-microemulsifying drug delivery system (SMEDDS) of vitamin D3 for augmentation of its solubility and dissolution. The studies employed a 32 full factorial design by employing JMP 13.2.1, software for preparation of liquid SMEDDS. Further, the prediction profiler was utilized to optimized liquid SMEDDS-Vit.D3 (OF) formulation. The solidification of liquid SMEDDS-Vit.D3 formulation was carried out by physical adsorption over Neusilin US2 and Aerosil 200 carriers. Solid-state evaluation of SMEDDS-Vit.D3 suggested the transformation of crystalline to amorphous form of Vit.D3 which is responsible for imparting more aqueous solubility and thus enhancement in dissolution behaviour. The investigation of flow behaviours viz. flow function (FF) and effective angle of wall friction (EAWF) of solid SMEDDS-Vit.D3 was performed using powder flow tester. Solid SMEDDS-Vit.D3 prepared using Neusilin US2 showed good flow behaviour and hence was developed into tablets. The tablets showed good quality control parameters as per pharmacopeial standards. The in vitro dissolution studies demonstrated more dissolution of Vit.D3 in SMEDDS (liquid, solid, and tablet) when compared to the unprocessed drug. The shelf life (T90) of tablets was reported to be 28.12 months suggesting excellent stability of Vit.D3 in solid SMEDDS. In nutshell, our research works explore the utilization of SMEDDS for the oral delivery of Vit.D3 to gain maximum health-related benefits.


Asunto(s)
Colecalciferol , Sistemas de Liberación de Medicamentos , Emulsiones/química , Solubilidad , Comprimidos
6.
Int J Biol Macromol ; 171: 514-526, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33428954

RESUMEN

The Alginate-Neusilin US2 micro-composite (MC) beads were fabricated and optimized for oral delivery of hesperidin (HES). A 32 full factorial design encompassing independent variables (factors) such as the concentration of sodium alginate (X1), and Neusilin US2 (X2) and dependant variables (response) such as particle size (Y1), entrapment efficiency (Y2), and swelling degree (Y3). Nine batches were prepared by formulation design employing statistical software JMP 13.2.1. The multiple regression analysis (MLRA) was carried to explore the influence of factor over responses. Further, a prediction profiler was used to trace the optimum concentration of factors based on desirable responses. The optimized beads (OF) were characterized for their morphology and size by motic microscopy and scanning electron microscopy. In vitro release, kinetic studies were performed in simulated gastric and intestinal fluids. In vivo pharmacokinetic studies revealed better absorption of HES from optimized beads (OF) compared to HES suspension which could be due to the prevention of acidic degradation of HES in the stomach. The estimated shelf life of OF formulation was found to be 3.86 years suggested better stability after fabrication. In a nutshell, the developed micro-composite beads of HES could be a better alternative for promising oral sustained delivery of HES.


Asunto(s)
Alginatos/química , Compuestos de Aluminio/química , Portadores de Fármacos/química , Jugo Gástrico/metabolismo , Hesperidina/administración & dosificación , Compuestos de Magnesio/química , Silicatos/química , Administración Oral , Alginatos/administración & dosificación , Alginatos/farmacocinética , Compuestos de Aluminio/administración & dosificación , Compuestos de Aluminio/farmacocinética , Animales , Líquidos Corporales/metabolismo , Técnicas de Química Analítica , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Composición de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Hesperidina/farmacocinética , Intestinos , Cinética , Compuestos de Magnesio/administración & dosificación , Compuestos de Magnesio/farmacocinética , Masculino , Microscopía Electrónica de Rastreo , Microesferas , Tamaño de la Partícula , Ratas Wistar , Silicatos/administración & dosificación , Silicatos/farmacocinética
7.
J Microencapsul ; 38(1): 61-79, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33245007

RESUMEN

AIM: The present study endeavours to develop a solid self-microemulsifying nutraceutical drug delivery system for hesperidin (HES) using quality by design (QbD) to improve its biopharmaceutical attributes. METHODS: A 32 full factorial design was employed to study the influence of factors on selected responses. Risk assessment was performed by portraying Ishikawa fishbone diagram and failure mode effect analysis (FMEA). The in vivo antidiabetic study was carried on induced diabetic rats. RESULTS: The optimised liquid SMEDDS-HES (OF) formulation showed emulsification time (Y 1) = 102.5 ± 2.52 s, globule size (Y 2) = 225.2 ± 3.40 nm, polydispersity index (Y 3) = 0.294 ± 0.62, and zeta potential (Y 4) = -25.4 ± 1.74 mV, respectively. The solid SMEDDS-HES (SOF-7) formulation was characterised by FTIR, PXRD, DSC, and SEM. The shelf life of SOF-7 was found to be 32.88 months. The heamatological and histopathological data of diabetic rats showed prominent antidiabetic activity. CONCLUSIONS: The optimised formulation showed improved dissolution, desired stability, and promising antidiabetic activity.


Asunto(s)
Productos Biológicos/administración & dosificación , Suplementos Dietéticos , Emulsionantes/administración & dosificación , Hesperidina/administración & dosificación , Adsorción , Animales , Rastreo Diferencial de Calorimetría , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos , Emulsiones , Excipientes , Hipoglucemiantes , Técnicas In Vitro , Masculino , Modelos Estadísticos , Páncreas/efectos de los fármacos , Páncreas/patología , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Medición de Riesgo , Solubilidad , Tensoactivos , Termodinámica , Difracción de Rayos X
8.
Drug Deliv Transl Res ; 6(5): 610-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27465619

RESUMEN

The present investigation is aimed to design a statistically optimized self-microemulsifying drug delivery system (SMEDDS) of eprosartan mesylate (EM). Preliminary screening was carried out to find a suitable combination of various excipients for the formulation. A 3(2) full factorial design was employed to determine the effect of various independent variables on dependent (response) variables. The independent variables studied in the present work were concentration of oil (X 1) and the ratio of S mix (X 2), whereas the dependent variables were emulsification time (s), globule size (nm), polydispersity index (pdi), and zeta potential (mV), and the multiple linear regression analysis (MLRA) was employed to understand the influence of independent variables on dependent variables. Furthermore, a numerical optimization technique using the desirability function was used to develop a new optimized formulation with desired values of dependent variables. The optimized SMEDDS formulation of eprosartan mesylate (EMF-O) by the above method exhibited emulsification time, 118.45 ± 1.64 s; globule size, 196.81 ± 1.29 nm; zeta potential, -9.34 ± 1.2 mV, and polydispersity index, 0.354 ± 0.02. For the in vitro dissolution study, the optimized formulation (EMF-O) and pure drug were separately entrapped in the dialysis bag, and the study indicated higher release of the drug from EMF-O. In vivo pharmacokinetic studies in Wistar rats using PK solver software revealed 2.1-fold increment in oral bioavailability of EM from EMF-O, when compared with plain suspension of pure drug.


Asunto(s)
Acrilatos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Imidazoles/farmacocinética , Tiofenos/farmacocinética , Acrilatos/administración & dosificación , Acrilatos/sangre , Acrilatos/química , Administración Oral , Animales , Disponibilidad Biológica , Liberación de Fármacos , Emulsiones/administración & dosificación , Excipientes/química , Imidazoles/administración & dosificación , Imidazoles/sangre , Imidazoles/química , Masculino , Tamaño de la Partícula , Ratas , Solubilidad , Tiofenos/administración & dosificación , Tiofenos/sangre , Tiofenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...