Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Integr Cancer Ther ; 22: 15347354231162584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37204076

RESUMEN

Cancer-related fatigue (CRF) is a common and burdensome, often long-term side effect of cancer and its treatment. Many non-pharmacological treatments have been investigated as possible CRF therapies, including exercise, nutrition, health/psycho-education, and mind-body therapies. However, studies directly comparing the efficacy of these treatments in randomized controlled trials are lacking. To fill this gap, we conducted a parallel single blind randomized controlled pilot efficacy trial with women with CRF to directly compare the effects of Qigong (a form of mind-body intervention) (n = 11) to an intervention that combined strength and aerobic exercise, plant-based nutrition and health/psycho-education (n = 13) in a per protocol analysis. This design was chosen to determine the comparative efficacy of 2 non-pharmacologic interventions, with different physical demand intensities, in reducing the primary outcome measure of self-reported fatigue (FACIT "Additional Concerns" subscale). Both interventions showed a mean fatigue improvement of more than double the pre-established minimal clinically important difference of 3 (qigong: 7.068 ± 10.30, exercise/nutrition: 8.846 ± 12.001). Mixed effects ANOVA analysis of group × time interactions revealed a significant main effect of time, such that both groups significantly improved fatigue from pre- to post-treatment (F(1,22) = 11.898, P = .002, generalized eta squared effect size = 0.116) There was no significant difference between fatigue improvement between groups (independent samples t-test: P = .70 ), suggesting a potential equivalence or non-inferiority of interventions, which we could not definitively establish due to our small sample size. This study provides evidence from a small sample of n = 24 women with CRF that qigong improves fatigue similarly to exercise-nutrition courses. Qigong additionally significantly improved secondary measures of mood, emotion regulation, and stress, while exercise/nutrition significantly improved secondary measures of sleep/fatigue. These findings provide preliminary evidence for divergent mechanisms of fatigue improvement across interventions, with qigong providing a gentler and lower-intensity alternative to exercise/nutrition.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Qigong , Humanos , Femenino , Qigong/métodos , Proyectos Piloto , Método Simple Ciego , Calidad de Vida , Ejercicio Físico , Fatiga/etiología , Fatiga/terapia , Neoplasias/complicaciones , Neoplasias/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Artículo en Inglés | MEDLINE | ID: mdl-38939123

RESUMEN

HNN-core is a library for circuit and cellular level interpretation of non-invasive human magneto-/electro-encephalography (MEG/EEG) data. It is based on the Human Neocortical Neurosolver (HNN) software (Neymotin et al., 2020), a modeling tool designed to simulate multiscale neural mechanisms generating current dipoles in a localized patch of neocortex. HNN's foundation is a biophysically detailed neural network representing a canonical neocortical column containing populations of pyramidal and inhibitory neurons together with layer-specific exogenous synaptic drive (Figure 1 left). In addition to simulating network-level interactions, HNN produces the intracellular currents in the long apical dendrites of pyramidal cells across the cortical layers known to be responsible for macroscopic current dipole generation.

3.
Elife ; 92020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31967544

RESUMEN

Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.


Neurons carry information in the form of electrical signals. Each of these signals is too weak to detect on its own. But the combined signals from large groups of neurons can be detected using techniques called EEG and MEG. Sensors on or near the scalp detect changes in the electrical activity of groups of neurons from one millisecond to the next. These recordings can also reveal changes in brain activity due to disease. But how do EEG/MEG signals relate to the activity of neural circuits? While neuroscientists can rarely record electrical activity from inside the human brain, it is much easier to do so in other animals. Computer models can then compare these recordings from animals to the signals in human EEG/MEG to infer how the activity of neural circuits is changing. But building and interpreting these models requires advanced skills in mathematics and programming, which not all researchers possess. Neymotin et al. have therefore developed a user-friendly software platform that can help translate human EEG/MEG recordings into circuit-level activity. Known as the Human Neocortical Neurosolver, or HNN for short, the open-source tool enables users to develop and test hypotheses on the neural origin of EEG/MEG signals. The model simulates the electrical activity of cells in the outer layers of the human brain, the neocortex. By feeding human EEG/MEG data into the model, researchers can predict patterns of circuit-level activity that might have given rise to the EEG/MEG data. The HNN software includes tutorials and example datasets for commonly measured signals, including brain rhythms. It is free to use and can be installed on all major computer platforms or run online. HNN will help researchers and clinicians who wish to identify the neural origins of EEG/MEG signals in the healthy or diseased brain. Likewise, it will be useful to researchers studying brain activity in animals, who want to know how their findings might relate to human EEG/MEG signals. As HNN is suitable for users without training in computational neuroscience, it offers an accessible tool for discoveries in translational neuroscience.


Asunto(s)
Electroencefalografía/métodos , Magnetoencefalografía/métodos , Neocórtex/fisiología , Programas Informáticos , Algoritmos , Potenciales Evocados , Humanos , Modelos Neurológicos , Interfaz Usuario-Computador
4.
Cogn Psychol ; 103: 85-109, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29524679

RESUMEN

Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering.


Asunto(s)
Modelos Psicológicos , Procesos Estocásticos , Pensamiento/fisiología , Adulto , Algoritmos , Teorema de Bayes , Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...