RESUMEN
Immune imprinting is a driver known to shape the anti-hemagglutinin (HA) antibody landscape of individuals born within the same birth cohort. With the HA and neuraminidase (NA) proteins evolving at different rates under immune selection pressures, anti-HA and anti-NA antibody responses since childhood influenza virus infections have not been evaluated in parallel at the individual level. This is partly due to the limited knowledge of changes in NA antigenicity, as seasonal influenza vaccines have focused on generating neutralizing anti-HA antibodies against HA antigenic variants. Here, we systematically characterized the NA antigenic variants of seasonal A(H1N1) viruses from 1977 to 1991 and completed the antigenic profile of N1 NAs from 1977 to 2015. We identified that NA proteins of A/USSR/90/77, A/Singapore/06/86, and A/Texas/36/91 were antigenically distinct and mapped N386K as a key determinant of the NA antigenic change from A/USSR/90/77 to A/Singapore/06/86. With comprehensive panels of HA and NA antigenic variants of A(H1N1) and A(H1N1)pdm09 viruses, we determined hemagglutinin inhibition (HI) and neuraminidase inhibition (NI) antibodies from 130 subjects born between 1950 and 2015. Age-dependent imprinting was observed for both anti-HA and anti-NA antibodies, with the peak HI and NI titers predominantly detected from subjects at 4 to 12 years old during the year of initial virus isolation, except the age-independent anti-HA antibody response against A(H1N1)pdm09 viruses. More participants possessed antibodies that reacted to multiple antigenically distinct NA proteins than those with antibodies that reacted to multiple antigenically distinct HA proteins. Our results support the need to include NA proteins in seasonal influenza vaccine preparations. IMPORTANCE Seasonal influenza vaccines have aimed to generate neutralizing anti-HA antibodies for protection since licensure. More recently, anti-NA antibodies have been established as an additional correlate of protection. While HA and NA antigenic changes occurred discordantly, the anti-HA and anti-NA antibody profiles have rarely been analyzed in parallel at the individual level, due to the limited knowledge on NA antigenic changes. By characterizing NA antigenic changes of A(H1N1) viruses, we determined the anti-HA and anti-NA antibody landscape against antigenically distinct A(H1N1) and A(H1N1)pdm09 viruses using sera of 130 subjects born between 1950 and 2015. We observed age-dependent imprinting of both anti-HA and anti-NA antibodies against strains circulated during the first decade of life. A total of 67.7% (88/130) and 90% (117/130) of participants developed cross-reactive antibodies to multiple HA and NA antigens at titers ≥1:40. With slower NA antigenic changes and cross-reactive anti-NA antibody responses, including NA protein in influenza vaccine preparation may enhance vaccine efficacy.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Niño , Preescolar , Hemaglutininas , Formación de Anticuerpos , Neuraminidasa/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza/genéticaRESUMEN
Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.
Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A/genética , Teorema de Bayes , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , SARS-CoV-2 , Antígenos Virales/genética , Genotipo , Fenotipo , Anticuerpos Antivirales/genéticaRESUMEN
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Asunto(s)
Brotes de Enfermedades , Gammainfluenzavirus/clasificación , Gammainfluenzavirus/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Virus Reordenados , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Hong Kong/epidemiología , Humanos , Modelos Moleculares , Mutación , Filogenia , Vigilancia en Salud Pública , Análisis de Secuencia de ADN , Relación Estructura-Actividad , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1009352.].
RESUMEN
Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50â% inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75â%) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.
Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/enzimología , Neuraminidasa/metabolismo , Sustitución de Aminoácidos , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Genes Virales , Glicosilación , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Cinética , Modelos Moleculares , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Neuraminidasa/genética , Oseltamivir/farmacología , Conformación Proteica , Zanamivir/farmacologíaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1009330.].
RESUMEN
We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Análisis de Secuencia , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
While vaccination is considered the most effective means to prevent influenza infection, its seasonal effectiveness varies, depending on the circulating influenza strains. Here, we characterized the circulation of influenza strains in October-2018 and March-2019 around the world. For this, we used nasopharyngeal samples collected from outpatient and hospitalized patients in Israel and data reported in ECDC, CDC, and WHO databases. Influenza A(H3N2) was dominant in Israel, while in Europe, Asia, and USA, A(H1N1)pdm09 virus circulated first, and then the A(H3N2) virus also appeared. Phylogenetic analysis indicated that A(H3N2) viruses circulating in Israel belonged to clade-3C.3a, while in Europe, Asia, and USA, A(H3N2) viruses belonged to subclade-3C.2a1, but were later replaced by clade-3C.3a viruses in USA. The vaccine A(H3N2) components of that year, A/Singapore/INFIMH-16-0019/2016-(H3N2)-like-viruses, belonged to clade-3C.2a1. The circulation of different influenza subtypes and clades of A(H3N2) viruses in a single season highlights the need for universal influenza vaccines.
RESUMEN
Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations.
Asunto(s)
Anticuerpos Antivirales/farmacología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Hemaglutininas/inmunología , Hemaglutininas/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , PorcinosRESUMEN
Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.
Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/genética , Células Productoras de Anticuerpos/inmunología , Sitios de Unión , Epítopos , Humanos , Inmunoglobulina G/inmunología , Nucleocápside/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.
Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Péptidos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , PorcinosRESUMEN
We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies (mAbs). In this study we demonstrated that prophylactic intravenous administration of 15 mg/kg of porcine mAb pb18, against the K160-163 site of the hemagglutinin, significantly reduced lung pathology and nasal virus shedding and eliminated virus from the lung of pigs following H1N1pdm09 challenge. When given at 1 mg/kg, pb18 significantly reduced lung pathology and lung and BAL virus loads, but not nasal shedding. Similarly, when pb18 was given in combination with pb27, which recognized the K130 site, at 1 mg/kg each, lung virus load and pathology were reduced, although without an apparent additive or synergistic effect. No evidence for mAb driven virus evolution was detected. These data indicate that intravenous administration of high doses was required to reduce nasal virus shedding, although this was inconsistent and seldom complete. In contrast, the effect on lung pathology and lung virus load is consistent and is also seen at a one log lower dose, strongly indicating that a lower dose might be sufficient to reduce severity of disease, but for prevention of transmission other measures would be needed.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/tratamiento farmacológico , Administración Intravenosa , Animales , Líquido del Lavado Bronquioalveolar/virología , Modelos Animales de Enfermedad , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/transmisión , Gripe Humana/virología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/patología , Mucosa Nasal/virología , Sus scrofa , Carga Viral/inmunología , Esparcimiento de Virus/efectos de los fármacos , Esparcimiento de Virus/inmunologíaRESUMEN
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Asunto(s)
Brotes de Enfermedades , Gammainfluenzavirus/genética , Hemaglutininas Virales/genética , Gripe Humana/epidemiología , Mutación , Proteínas Virales de Fusión/genética , Adolescente , Adulto , Anciano , Sustitución de Aminoácidos , Niño , Preescolar , Monitoreo Epidemiológico , Femenino , Expresión Génica , Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Hong Kong/epidemiología , Humanos , Lactante , Gripe Humana/patología , Gripe Humana/virología , Gammainfluenzavirus/enzimología , Masculino , Persona de Mediana Edad , Modelos Moleculares , Epidemiología Molecular , Filogenia , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estudios Retrospectivos , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismoRESUMEN
The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection.IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.
Asunto(s)
Protección Cruzada/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Neuraminidasa/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Niño , Reacciones Cruzadas/inmunología , Perros , Femenino , Células HEK293 , Hemaglutininas/inmunología , Humanos , Inmunización Pasiva , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/virología , Vacunación , Adulto JovenRESUMEN
We report 3 cases of influenza C virus in children hospitalized with severe acute respiratory infection in Cameroon. Two of these case-patients had grave clinical manifestations, but all 3 recovered. The lack of specific antiviral drugs for influenza C virus highlights the need to identify and describe cases involving this virus.
Asunto(s)
Gammainfluenzavirus/genética , Hospitalización , Gripe Humana/epidemiología , Gripe Humana/virología , Camerún/epidemiología , Preescolar , Genes Virales , Genoma Viral , Humanos , Lactante , Gripe Humana/diagnóstico , Gammainfluenzavirus/clasificación , Filogenia , Vigilancia de la PoblaciónRESUMEN
A non-replicating form of pseudotyped influenza virus, inactivated by suppression of the haemagglutinin signal sequence (S-FLU), can act as a broadly protective vaccine. S-FLU can infect for a single round only, and induces heterotypic protection predominantly through activation of cross-reactive T cells in the lung. Unlike the licensed live attenuated virus, it cannot reassort a pandemic haemagglutinin (HA) into seasonal influenza. Here we present data on four new forms of S-FLU coated with H7 HAs from either A/Anhui/1/2013, A/Shanghai/1/2013, A/Netherlands/219/2003 or A/New York/107/2003 strains of H7 virus. We show that intranasal vaccination induced a strong local CD8 T cell response and protected against heterosubtypic X31 (H3N2) virus and highly virulent PR8 (H1N1), but not influenza B virus. Intranasal vaccination also induced a strong neutralizing antibody response to the encoded neuraminidase. If given at higher dose in the periphery with intraperitoneal administration, H7 S-FLU induced a specific neutralizing antibody response to H7 HA coating the particle. Polyvalent intraperitoneal vaccination with mixed H7 S-FLU induced a broadly neutralizing antibody response to all four H7 strains. S-FLU is a versatile vaccine candidate that could be rapidly mobilized ahead of a new pandemic threat.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Animales , Protección Cruzada , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Masculino , Ratones Endogámicos C57BL , Neuraminidasa/genética , VacunaciónRESUMEN
BACKGROUND: Influenza epidemiological and virologic data from Georgia are limited. We aimed to present Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) surveillance data and characterize influenza viruses circulating in the country over three influenza seasons. METHODS: We analyzed sentinel site ILI and SARI data for the 2014-2017 seasons in Georgia. Patients' samples were screened by real-time RT-PCR and influenza viruses isolated were characterized antigenically by haemagglutination inhibition assay and genetically by sequencing of HA and NA genes. RESULTS: 32% (397/1248) of ILI and 29% (581/1997) of SARI patients tested were positive for influenza viruses. In 2014-2015 the median week of influenza detection was week 7/2015 with B/Yamagata lineage viruses dominating (79%); in 2015-2016-week 5/2016 was the median with A/H1N1pdm09 viruses prevailing (83%); and in 2016-2017 a bimodal distribution of influenza activity was observed-the first wave was caused by A/H3N2 (55%) with median week 51/2016 and the second by B/Victoria lineage viruses (45%) with median week 9/2017. For ILI, influenza virus detection was highest in children aged 5-14 years while for SARI patients most were aged >15 years and 27 (4.6%) of 581 SARI cases died during the three seasons. Persons aged 30-64 years had the highest risk of fatal outcome, notably those infected with A/H1N1pdm09 (OR 11.41, CI 3.94-33.04, p<0.001). A/H1N1pdm09 viruses analyzed by gene sequencing fell into genetic groups 6B and 6B.1; A/H3N2 viruses belonged to genetic subclades 3C.3b, 3C.3a, 3C.2a and 3C.2a1; B/Yamagata lineage viruses were of clade 3 and B/Victoria lineage viruses fell in clade1A. CONCLUSION: In Georgia influenza virus activity occurred mainly from December through March in all seasons, with varying peak weeks and predominating viruses. Around one third of ILI/ SARI cases were associated with influenza caused by antigenically and genetically distinct influenza viruses over the course of the three seasons.
Asunto(s)
Gripe Humana/epidemiología , Síndrome Respiratorio Agudo Grave/epidemiología , Adolescente , Adulto , Factores de Edad , Anciano , Animales , Niño , Preescolar , Perros , Monitoreo Epidemiológico , Georgia (República)/epidemiología , Humanos , Lactante , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Persona de Mediana Edad , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Factores de Riesgo , Estaciones del Año , Síndrome Respiratorio Agudo Grave/virologíaRESUMEN
Influenza A(H3N2) viruses are associated with outbreaks worldwide and can cause disease with severe complications. The impact can be reduced by vaccination, which induces neutralizing antibodies that mainly target the haemagglutinin glycoprotein (HA). In this study we generated neutralizing mouse monoclonal antibodies (mAbs) against A/Victoria/361/2011 and identified their epitopes by generating and sequencing escape viruses. The epitopes are located in antigenic site B, which is near the receptor-binding site and is immunodominant in humans. Amino acid (aa) substitutions at positions 156, 158, 159, 189, 190 and 193 in antigenic site B led to reduced ability of mAbs to block receptor-binding. The majority of A(H3N2) viruses that have been circulating since 2014 are antigenically distinct from previous A(H3N2) viruses. The neutralization-sensitive epitopes in antigenic site B of currently circulating viruses were examined with these mAbs. We found that clade 3C.2a viruses, possessing an additional potential glycosylation site at HA1 position N158, were poorly recognized by some of the mAbs, but other residues, notably at position 159, also affected antibody binding. Through a mass spectrometric (MS) analysis of HA, the glycosylated sites of HA1 were established and we determined that residue 158 of HA1 was glycosylated and so modified a neutralization-sensitive epitope. Understanding and monitoring individual epitopes is likely to improve vaccine strain selection.
Asunto(s)
Epítopos/genética , Hemaglutininas Virales/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Hurones , Glicosilación , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.
Asunto(s)
Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Sustitución de Aminoácidos , Variación Antigénica , Antígenos Virales/genética , Bases de Datos Genéticas , Evolución Molecular , Variación Genética , Genoma Viral , Salud Global , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza B/clasificación , Virus de la Influenza B/inmunología , Modelos Moleculares , Epidemiología Molecular , Filogenia , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/genética , Proteínas Virales/química , Proteínas Virales/genéticaRESUMEN
BACKGROUND: Two new subclades of influenza A(H3N2) viruses became prominent during the 2014-2015 Northern Hemisphere influenza season. The HA glycoproteins of these viruses showed sequence changes previously associated with alterations in receptor-binding properties. To address how these changes influence virus propagation, viruses were isolated and propagated in conventional MDCK cells and MDCK-SIAT1 cells, cells with enhanced expression of the human receptor for the virus, and analysed at each passage. METHODS: Gene sequence analysis was undertaken as virus was passaged in conventional MDCK cells and MDCK-SIAT1 cells. Alterations in receptor recognition associated with passage of virus were examined by haemagglutination assays using red blood cells from guinea pigs, turkeys and humans. Microneutralisation assays were performed to determine how passage-acquired amino acid substitutions and polymorphisms affected virus antigenicity. RESULTS: Viruses were able to infect MDCK-SIAT1 cells more efficiently than conventional MDCK cells. Viruses of both the 3C.2a and 3C.3a subclades showed greater sequence change on passage in conventional MDCK cells than in MDCK-SIAT1 cells, with amino acid substitutions being seen in both HA and NA glycoproteins. However, virus passage in MDCK-SIAT1 cells at low inoculum dilutions showed reducing infectivity on continued passage. CONCLUSIONS: Current H3N2 viruses should be cultured in the MDCK-SIAT1 cell line to maintain faithful replication of the virus, and at an appropriate multiplicity of infection to retain infectivity.