Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37196854

RESUMEN

In this study, the biochemical and physiological features of the firebug Pyrrhocoris apterus were investigated to understand the impact of the honeybee Apis mellifera venom on them using physiological methods (mortality, total level of metabolism), biochemical methods (ELISA, mass spectrometry, polyacrylamide gel electrophoresis, spectrophotometry) and molecular methods (real-time PCR). Together, the obtained findings suggest that venom injection increased the level of adipokinetic hormone (AKH) in the CNS of P. apterus, indicating that this hormone plays a key role in activating defence responses. Furthermore, histamine levels in the gut increased significantly after envenomation and did not seem to be modulated by AKH. In contrast, histamine levels in the haemolymph increased after treatment with AKH and AKH + venom. In addition, we found that vitellogenin levels in haemolymph decreased in both males and females after venom application. Lipids, which are the main energy metabolites used by Pyrrhocoris, were significantly exhausted from the haemolymph after the administration of venom and the co-application with AKH reversed this effect. However, we did not find much influence on the effect of digestive enzymes after the injection of venom. Our research has highlighted the noticeable effect of bee venom on P. apterus' body and provided new insights into the role of AKH in controlling defensive responses. However, it is also likely that there will be alternative defence mechanisms.


Asunto(s)
Venenos de Abeja , Heterópteros , Hormonas de Insectos , Femenino , Masculino , Animales , Venenos de Abeja/metabolismo , Histamina/farmacología , Heterópteros/metabolismo , Hormonas de Insectos/farmacología , Ácido Pirrolidona Carboxílico/metabolismo
2.
Insect Biochem Mol Biol ; 152: 103877, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403678

RESUMEN

The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.


Asunto(s)
Varroidae , Abejas/genética , Animales , Varroidae/fisiología , Proteómica , Perfilación de la Expresión Génica , Transcriptoma , Olfato
3.
Insects ; 13(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35206766

RESUMEN

In temperate climates, honey bee workers of the species Apis mellifera have different lifespans depending on the seasonal phenotype: summer bees (short lifespan) and winter bees (long lifespan). Many studies have revealed the biochemical parameters involved in the lifespan differentiation of summer and winter bees. However, comprehensive information regarding the metabolic changes occurring in their bodies between the two is limited. This study used proton nuclear magnetic resonance (1H NMR) spectroscopy to analyze the metabolic differences between summer and winter bees of the same age. The multivariate analysis showed that summer and winter bees could be distinguished based on their metabolic profiles. Among the 36 metabolites found, 28 metabolites have displayed significant changes from summer to winter bees. Compared to summer bees, trehalose in winter bees showed 1.9 times higher concentration, and all amino acids except for proline and alanine showed decreased patterns. We have also detected an unknown compound, with a CH3 singlet at 2.83 ppm, which is a potential biomarker that is about 13 times higher in summer bees. Our results show that the metabolites in summer and winter bees have distinctive characteristics; this information could provide new insights and support further studies on honey bee longevity and overwintering.

4.
5.
Front Vet Sci ; 8: 698976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485429

RESUMEN

American foulbrood (AFB) is a dangerous disease of honeybees (Apis mellifera) caused by the spore-forming bacterium Paenibacillus larvae. According to the ERIC (enterobacterial repetitive intergenic consensus) classification, five genotypes are distinguished, i.e., I, II, III, IV, and V, which differ in their virulence and prevalence in colonies. In the Czech Republic, AFB prevalence is monitored by the State Veterinary Administration; however, the occurrence of specific P. larvae genotypes within the country remains unknown. In this study, our aim was to genotype field P. larvae strains collected in the Czech Republic according to the ERIC classification. In total, 102 field isolates from colonies with AFB clinical symptoms were collected from various locations in the Czech Republic, and the PCR genotypization was performed using ERIC primers. We confirmed the presence of both ERIC I and II genotypes, while ERIC III, IV, and V were not detected. The majority of samples (n = 82, 80.4%) were identified as ERIC II, while the ERIC I genotype was confirmed only in 20 samples (19.6%). In contrast to other European countries, the ERIC II genotype is predominant in Czech honeybee colonies. The ERIC I genotype was mostly detected in border regions close to Poland, Slovakia, and Austria.

6.
Insects ; 12(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572468

RESUMEN

European foulbrood (EFB) is an infectious disease of honey bees caused by the bacterium Melissococcus plutonius. A method for DNA isolation and conventional PCR diagnosis was developed using hive debris, which was non-invasively collected on paper sheets placed on the bottom boards of hives. Field trials utilized 23 honey bee colonies with clinically positive symptoms and 21 colonies without symptoms. Bayes statistics were applied to calculate the comparable parameters for EFB diagnostics when using honey, hive debris, or samples of adult bees. The reliability of the conventional PCR was 100% at 6.7 × 103 Colony Forming Unit of M. plutonius in 1 g of debris. The sensitivity of the method for the sampled honey, hive debris, and adult bees was 0.867, 0.714, and 1.000, respectively. The specificity for the tested matrices was 0.842, 0.800, and 0.833. The predictive values for the positive tests from selected populations with 52% prevalence were 0.813, 0.833, and 0.842, and the real accuracies were 0.853, 0.750, and 0.912, for the honey, hive debris, and adult bees, respectively. It was concluded that hive debris can effectively be utilized to non-invasively monitor EFB in honey bee colonies.

7.
J Exp Biol ; 224(Pt 3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288532

RESUMEN

In the temperate climates of central Europe and North America, two distinct honeybee (Apis mellifera) populations are found in colonies: short-living summer bees emerge in spring and survive until summer, whereas long-living winter bees emerge in late August and overwinter. Besides the difference in their life spans, each of these populations fulfils a different role in the colonies and individual bees have distinct physiological and immunological adaptations depending on their roles. For instance, winter worker bees have higher vitellogenin levels and larger reserves of nutrients in the fat body than summer bees. The differences between the immune systems of both populations are well described at the constitutive level; however, our knowledge of its inducibility is still very limited. In this study, we focus on the response of 10-day-old honeybee workers to immune challenges triggered in vivo by injecting heat-killed bacteria, with particular focus on honeybees that emerge and live under hive conditions. Responses to bacterial injections differed between summer and winter bees. Winter bees exhibited a more intense response, including higher expression of antimicrobial genes and antimicrobial activity, as well as a significant decrease in vitellogenin gene expression and its concentration in the hemolymph. The intense immune response observed in winter honeybees may contribute to our understanding of the relationships between colony fitness and infection with pathogens, as well as its association with successful overwintering.


Asunto(s)
Inmunidad , Vitelogeninas , Animales , Abejas , Europa (Continente) , América del Norte , Estaciones del Año
8.
Insects ; 10(8)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394797

RESUMEN

It has been known for many years that in temperate climates the European honey bee, Apis mellifera, exists in the form of two distinct populations within the year, short-living summer bees and long-living winter bees. However, there is only limited knowledge about the basic biochemical markers of winter and summer populations as yet. Nevertheless, the distinction between these two kinds of bees is becoming increasingly important as it can help beekeepers to estimate proportion of long-living bees in hives and therefore in part predict success of overwintering. To identify markers of winter generations, we employed the continuous long-term monitoring of a single honey bee colony for almost two years, which included measurements of physiological and immunological parameters. The results showed that the total concentration of proteins, the level of vitellogenin, and the antibacterial activity of haemolymph are the best three of all followed parameters that are related to honey bee longevity and can therefore be used as its markers.

9.
Insects ; 9(3)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973559

RESUMEN

We investigated the importance of protein nutrition for honey bee immunity. Different protein diets (monofloral pollen of Helianthus spp., Sinapis spp., Asparagus spp., Castanea spp., a mixture of the four different pollen and the pollen substitute FeedbeeTM) were fed to honey bees in cages ad libitum. After 18 days of feeding, apidaecin 1 isoforms concentration in the thorax were measured using nanoflow liquid chromatography coupled with mass spectrometry. Expression levels of genes, coding for apidaecins and abaecin in the abdomen were determined using quantitative PCR. The results indicate that protein-containing nutrition in adult worker honey bees can trigger certain metabolic responses. Bees without dietary protein showed lower apidaecin 1 isoforms concentrations. The significantly lowest concentration of apidaecin 1 isoforms was found in the group that was fed no pollen diet when compared to Asparagus, Castanea, Helianthus, and Sinapis pollen or the pollen supplement FeedBeeTM. Expression levels of the respective genes were also affected by the protein diets and different expression levels of these two antimicrobial peptides were found. Positive correlation between concentration and gene expression of apidaecins was found. The significance of feeding bees with different protein diets, as well as the importance of pollen nutrition for honey bee immunity is demonstrated.

10.
J Chromatogr A ; 1374: 134-144, 2014 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-25435459

RESUMEN

Apidaecins represent an important group of antimicrobial peptides occurring in honey bee hemolymph, where they play an important role as key components of humoral immunity. The present study demonstrates the development of a highly sensitive assay for apidaecin 1 isoforms quantification in the hemolymph or body parts from honey bee individuals. The analytical protocol comprises apidaecins 1 purification and enrichment steps by weak cation-exchange chromatography (WCX) in laboratory-made WCX-Tip microcolumns combined with a desalting step on a reversed-phase sorbent (C8) carried in StageTips. Apidaecin-enriched fraction was analyzed by a reversed-phase based nanoliquid chromatography (C4) separation coupled with high-resolution mass spectrometry. The method performance was validated in its specificity, linearity (0-5pmol), recovery (∼45%), precision (<10% at 0.1pmol), limit of detection (∼50fmol), limit of quantification (0.1pmol) and sample stability. The method was successfully applied to analyze the content of apidaecin 1 isoforms in the following samples: hemolymph - 13.0ng/µL (95% confidence interval of 7.5-18.6ng/µL), thoraxes - 36.2ng/unit (95% CI of 18.9-53.6ng/unit) and heads - 12.9ng/unit (95% CI of 9.1-16.7ng/unit). Freshly emerged bees had apidaecin 1 isoforms levels below the limit of detection. Thus it was possible to use them as a competitive matrix for calibration standards to prevent losses of highly basic apidaecins. This new protocol for apidaecin 1 isoforms quantification represents a promising tool to study the role of apidaecins in honey bee immunity and can be considered as a proof-of-concept for the development of sensitive quantification methods for basic antimicrobial peptides in various organisms.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Abejas/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Animales , Calibración , Cationes/química , Límite de Detección , Isoformas de Proteínas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...