Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2405741121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042687

RESUMEN

Banded iron formations (BIFs) archive the relationship between Earth's lithosphere, hydrosphere, and atmosphere through time. However, constraints on the origin of Earth's largest ore deposits, hosted by BIFs, are limited by the absence of direct geochronology. Without this temporal context, genetic models cannot be correlated with tectono-thermal and atmospheric drivers responsible for BIF upgrading through time. Utilizing in situ iron oxide U-Pb geochronology, we provide a direct timeline of events tracing development of all the giant BIF-hosted hematite deposits of the Hamersley Province (Pilbara Craton, Western Australia). Direct dating demonstrates that the major iron ore deposits in the region formed during 1.4 to 1.1 Ga. This is one billion to hundreds of millions of years later than previous age constraints based upon 1) the presence of hematite ore clasts in conglomerate beds deposited before ~1.84 Ga, and 2) phosphate mineral dating, which placed the onset of iron mineralization in the Province at ~2.2 to 2.0 Ga during the great oxidation event. Dating of the hematite clasts verified the occurrence of a ~2.2 to 2.0 Ga event, reflecting widespread, but now largely eroded iron mineralization occurring when the Pilbara and Kaapvaal cratons were proximal. No existing phosphate mineral dates overlap with obtained hematite dates and therefore cannot be related to hematite crystallization and ore formation. New geochronology conclusively links all major preserved hematite deposits to a far younger (1.4 to 1.1 Ga) formation period, correlated with the amalgamation of Australia following breakup of the Columbia supercontinent.

2.
Biology (Basel) ; 12(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37997970

RESUMEN

In the global migration crisis, one of the challenges in the effort to identify deceased migrants is establishing their region of origin, which facilitates the search for ante mortem data to be compared with the post mortem information. This pilot study explores the potential of using stable isotope analysis to distinguish between individuals coming from West Africa and the Horn of Africa. Six individuals (four of known origin and two of unknown origin) were sampled. δ13CVPDB(keratin), δ15NVPDB(keratin) and δ18OVSMOW(keratin) of hair were analysed using Elemental Analyzers coupled with Isotope Ratio Mass Spectrometry (IRMS). δ18OVSMOW(carbonate) and δ13CVPDB(carbonate) of bone were analysed using GasBench II with IRMS, while 87Sr/86Sr composition was determined in bone and dental enamel using laser ablation multi-collector inductively coupled plasma mass spectrometry. The stable isotope compositions of the individual from the Horn of Africa differed from the other individuals. The differences found between 87Sr/86Sr of enamel and bone and between δ18O and δ13C in bone and hair reflect changes in sources of food and water in accordance with regionally typical migration journeys. The analysis of multiple stable isotopes delivered promising results, allowing us to narrow down the region of origin of deceased migrants and corroborate the information about the migration journey.

3.
Nat Commun ; 14(1): 5274, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726314

RESUMEN

Argyle is the world's largest source of natural diamonds, yet one of only a few economic deposits hosted in a Paleoproterozoic orogen. The geodynamic triggers responsible for its alkaline ultramafic volcanic host are unknown. Here we show, using U-Pb and (U-Th)/He geochronology of detrital apatite and detrital zircon, and U-Pb dating of hydrothermal titanite, that emplacement of the Argyle lamproite is bracketed between 1311 ± 9 Ma and 1257 ± 15 Ma (2σ), older than previously known. To form the Argyle lamproite diatreme complex, emplacement was likely driven by lithospheric extension related to the breakup of the supercontinent Nuna. Extension facilitated production of low-degree partial melts and their migration through transcrustal corridors in the Paleoproterozoic Halls Creek Orogen, a rheologically-weak rift zone adjacent to the Kimberley Craton. Diamondiferous diatreme emplacement during (super)continental breakup may be prevalent but hitherto under-recognized in rift zones at the edges of ancient continental blocks.

4.
Sci Rep ; 13(1): 8581, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237065

RESUMEN

Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform ( https://ausgeochem.auscope.org.au ) and freely accessible to scientists from around the world. To demonstrate the power of the platform, three regional datasets from Kenya, Australia and the Red Sea are placed in their 4D geological, geochemical, and geographic contexts, revealing insights into the tectono-thermal evolutions of these areas. Beyond facilitating data interpretation, the archival of fission track and (U-Th)/He (meta-)data in relational schemas unlocks future potential for greater integration of thermochronology and numerical geoscience techniques. The power of formatting data to interface with external tools is demonstrated through the integration of GPlates Web Service with AusGeochem, enabling thermochronology data to be readily viewed in their paleogeographic context through deep time from within the platform.

5.
Sci Rep ; 12(1): 22485, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577789

RESUMEN

Zircon double dating (ZDD) of comendite lava reveals an eruption age of 7.0 ± 0.9 ka for the Qixiangzhan eruption (QXZ), Changbaishan-Tianchi volcano, China/DPRK. This age is supported by new 40Ar/39Ar sanidine experiments and a previous age control from charcoal at the base of the QXZ. The revised age supports correlations with distal ash in Eastern China and Central Japan and establishes a significant (estimated at Volcanic Explosivity Index 5+) eruption that may provide a useful Holocene stratigraphic marker in East Asia. The new age indicates that the QXZ lava does not record a ca. 17 ka Hilina Pali/Tianchi geomagnetic field excursion but rather a heretofore unrecognized younger Holocene excursion at ca. 7-8 ka. Comparison between U-Th zircon crystallization and ZDD as well as 40Ar/39Ar sanidine ages indicates a protracted period of accumulation of the QXZ magma that extends from ca. 18 ka to the eruption age. This connotes an eruption that mixed remobilized early formed crystals (antecrysts) from prior stages of magma accumulation with crystals formed near the time of eruption. Based on these results, a recurrence rate of ca. 7-8 ka for the Changbaishan-Tianchi magma system is found over the last two major eruption cycles.


Asunto(s)
Silicatos , Erupciones Volcánicas , Silicatos/química , China
6.
Sci Rep ; 7(1): 12457, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963475

RESUMEN

Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

7.
Sci Rep ; 7(1): 7787, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798407

RESUMEN

The Sanshandao gold deposit contains an estimated Au resource of >1500 tons, however little is known about the history of exhumation, and the magnitude of displacement on the ore-hosting fault. Structural measurement revealed two phases of normal and one phase of sinistral movement on the fault. Despite of intra-sample dispersions, (U-Th)/He ages from two sub-vertical profiles show decreasing trends from the surface down to -3560 m (zircon: 123 Ma to 55 Ma; apatite 103 Ma to 0.3 Ma). Over-dispersion of AHe ages likely reflects the presence of undetected inclusions. According to the age-depth pattern, we infer that the deposit underwent an early phase of rapid cooling in the late Early Cretaceous, which was followed by a short period of thermal stagnation and a revived rapid cooling between 75 Ma and 55 Ma in response to a combined effects of late normal movement and erosion. Since the Eocene, the deposit has experienced a slow monotonic cooling. Exhumation magnitude estimates suggest that the deposit have been denudated > 5.1 km. The two phases of normal displacement along the fault occurred in the late Early Cretaceous and Late Cretaceous to Paleocene, leading to a total offset magnitude of 0.5-2.3 km.

8.
Nat Commun ; 8: 15248, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508876

RESUMEN

Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ∼74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ∼2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions.

9.
Sci Adv ; 3(2): e1601121, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246632

RESUMEN

Zircon (U-Th)/He thermochronometry is an established radiometric dating technique used to place temporal constraints on a range of thermally sensitive geological events, such as crustal exhumation, volcanism, meteorite impact, and ore genesis. Isotopic, crystallographic, and/or mineralogical heterogeneities within analyzed grains can result in dispersed or anomalous (U-Th)/He ages. Understanding the effect of these grain-scale phenomena on the distribution of He in analyzed minerals should lead to improvements in data interpretation. We combine laser ablation microsampling and noble gas and trace element mass spectrometry to provide the first two-dimensional, grain-scale zircon He "maps" and quantify intragrain He distribution. These maps illustrate the complexity of intracrystalline He distribution in natural zircon and, combined with a correlated quantification of parent nuclide (U and Th) distribution, provide an opportunity to assess a number of crystal chemistry processes that can generate anomalous zircon (U-Th)/He ages. The technique provides new insights into fluid inclusions as potential traps of radiogenic He and confirms the effect of heterogeneity in parent-daughter isotope abundances and metamictization on (U-Th)/He systematics. Finally, we present a new inversion method where the He, U, and Th mapping data can be used to constrain the high- and low-temperature history of a single zircon crystal.

10.
PLoS One ; 9(1): e84711, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416270

RESUMEN

A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dagi twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dagi has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dagi, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with (14)C ages for cultural strata at Çatalhöyük, including level VII containing the "map" mural. A second pumice sample from a surficial deposit near the base of Hasan Dagi records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dagi punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dagi volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dagi as a potential volcanic hazard.


Asunto(s)
Arqueología , Pinturas , Erupciones Volcánicas , Cristalización , Silicatos/química , Turquía , Circonio/química
11.
Tectonophysics ; 541-543(6): 1-18, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-27065501

RESUMEN

According to new apatite fission track, zircon- and apatite (U-Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U-Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik-Möll valley- and Mur-Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg-Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...