Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688933

RESUMEN

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Asunto(s)
Altitud , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Selección Genética , Papúa Nueva Guinea , Humanos , Genoma Humano , Genética de Población
2.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36560850

RESUMEN

The admixture between modern humans and Neandertals has resulted in ∼2% of the genomes of present-day non-Africans being composed of Neandertal DNA. Introgressed Neandertal DNA has been demonstrated to significantly affect the transcriptomic landscape in people today and via this molecular mechanism influence phenotype variation as well. However, little is known about how much of that regulatory impact is mediated through long-range regulatory effects that have been shown to explain ∼20% of expression variation. Here we identified 60 transcription factors (TFs) with their top cis-eQTL SNP in GTEx being of Neandertal ancestry and predicted long-range Neandertal DNA-induced regulatory effects by screening for the predicted target genes of those TFs. We show that the TFs form a significantly connected protein-protein interaction network. Among them are JUN and PRDM5, two brain-expressed TFs that have their predicted target genes enriched in regions devoid of Neandertal DNA. Archaic cis-eQTLs for the 60 TFs include multiple candidates for local adaptation, some of which show significant allele frequency increases over the last ∼10,000 years. A large proportion of the cis-eQTL-associated archaic SNPs have additional associations with various immune traits, schizophrenia, blood cell type composition and anthropometric measures. Finally, we demonstrate that our results are consistent with those of Neandertal DNA-associated empirical trans-eQTLs. Our results suggest that Neandertal DNA significantly influences regulatory networks, that its regulatory reach goes beyond the 40% of genomic sequence it still covers in present-day non-Africans and that via the investigated mechanism Neandertal DNA influences the phenotypic variation in people today.


Asunto(s)
Hombre de Neandertal , Humanos , Animales , Hombre de Neandertal/genética , Frecuencia de los Genes , Genoma , Fenotipo , ADN/genética
3.
Transl Psychiatry ; 12(1): 433, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198681

RESUMEN

Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets.Our data suggest that evolutionary processes in recent human evolution like admixture with Neandertals significantly contribute to behavioral phenotypes but not psychiatric and neurological diseases. These findings help to link genetic variants in a population to putative past beneficial effects, which likely only indirectly contribute to pathology in modern day humans.


Asunto(s)
Hombre de Neandertal , Animales , Variación Genética , Genoma , Haplotipos , Humanos , Hombre de Neandertal/genética , Fenotipo
4.
FEBS J ; 289(11): 2992-3010, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33876573

RESUMEN

The study of human evolution, long constrained by a lack of experimental model systems, has been transformed by the emergence of the induced pluripotent stem cell (iPSC) field. iPSCs can be readily established from noninvasive tissue sources, from both humans and other primates; they can be maintained in the laboratory indefinitely, and they can be differentiated into other tissue types. These qualities mean that iPSCs are rapidly becoming established as viable and powerful model systems with which it is possible to address questions in human evolution that were until now logistically and ethically intractable, especially in the quest to understand humans' place among the great apes, and the genetic basis of human uniqueness. In this review, we discuss the key lessons and takeaways of this nascent field; from the types of research, iPSCs make possible to lingering challenges and likely future directions. We provide a comprehensive overview of how the seemingly unlikely combination of iPSCs and explicit evolutionary frameworks is transforming what is possible in our understanding of humanity's past and present.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Primates
5.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34662402

RESUMEN

Although some variation introgressed from Neanderthals has undergone selective sweeps, little is known about its functional significance. We used a Massively Parallel Reporter Assay (MPRA) to assay 5,353 high-frequency introgressed variants for their ability to modulate the gene expression within 170 bp of endogenous sequence. We identified 2,548 variants in active putative cis-regulatory elements (CREs) and 292 expression-modulating variants (emVars). These emVars are predicted to alter the binding motifs of important immune transcription factors, are enriched for associations with neutrophil and white blood cell count, and are associated with the expression of genes that function in innate immune pathways including inflammatory response and antiviral defense. We combined the MPRA data with other data sets to identify strong candidates to be driver variants of positive selection including an emVar that may contribute to protection against severe COVID-19 response. We endogenously deleted two CREs containing expression-modulation variants linked to immune function, rs11624425 and rs80317430, identifying their primary genic targets as ELMSAN1, and PAN2 and STAT2, respectively, three genes differentially expressed during influenza infection. Overall, we present the first database of experimentally identified expression-modulating Neanderthal-introgressed alleles contributing to potential immune response in modern humans.


Asunto(s)
Variación Genética , Genoma Humano , Inmunidad Innata/genética , Hombre de Neandertal , Animales , Expresión Génica , Humanos , Inflamación , Hombre de Neandertal/genética
6.
Front Genet ; 12: 703541, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422004

RESUMEN

Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.

7.
J Lipid Res ; 62: 100105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34390703

RESUMEN

The leptin receptor (Lepr) pathway is important for food intake regulation, energy expenditure, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chromosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-LeprL536Hfs*6-1NKB), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, LeprL536Hfs*6 develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the LeprL536Hfs*6 model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with LeprL536Hfs*6/wt mice results in compound heterozygous LeprL536Hfs*6/db mice, which develop even higher body weight and fat mass than both homozygous Leprdb/db and LeprL536Hfs*6 mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.


Asunto(s)
Obesidad/genética , Receptores de Leptina/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Mutación
8.
Genome Biol Evol ; 13(1)2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33247712

RESUMEN

Since the discovery of admixture between modern humans and Neandertals, multiple studies investigated the effect of Neandertal-derived DNA on human disease and nondisease phenotypes. These studies have linked Neandertal ancestry to skin- and hair-related phenotypes, immunity, neurological, and behavioral traits. However, these inferences have so far been limited to cohorts with participants of European ancestry. Here, I analyze summary statistics from 40 disease GWAS (genome-wide association study) cohorts of ∼212,000 individuals provided by the Biobank Japan Project for phenotypic effects of Neandertal DNA. I show that Neandertal DNA is associated with autoimmune diseases, prostate cancer and type 2 diabetes. Many of these disease associations are linked to population-specific Neandertal DNA, highlighting the importance of studying a wider range of ancestries to characterize the phenotypic legacy of Neandertals in people today.


Asunto(s)
Enfermedad/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Hombre de Neandertal/genética , Alelos , Animales , Diabetes Mellitus Tipo 2/genética , Evolución Molecular , Femenino , Fósiles , Variación Genética , Humanos , Japón , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Población Blanca/genética
9.
Curr Biol ; 30(17): 3465-3469.e4, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32707058

RESUMEN

The sodium channel Nav1.7 is crucial for impulse generation and conduction in peripheral pain pathways [1]. In Neanderthals, the Nav1.7 protein carried three amino acid substitutions (M932L, V991L, and D1908G) relative to modern humans. We expressed Nav1.7 proteins carrying all combinations of these substitutions and studied their electrophysiological effects. Whereas the single amino acid substitutions do not affect the function of the ion channel, the full Neanderthal variant carrying all three substitutions, as well as the combination of V991L with D1908G, shows reduced inactivation, suggesting that peripheral nerves were more sensitive to painful stimuli in Neanderthals than in modern humans. We show that, due to gene flow from Neanderthals, the three Neanderthal substitutions are found in ∼0.4% of present-day Britons, where they are associated with heightened pain sensitivity.


Asunto(s)
Mutación , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/patología , Adulto , Anciano , Sustitución de Aminoácidos , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.7/genética , Hombre de Neandertal , Dolor/genética , Dolor/metabolismo , Xenopus laevis
10.
Stem Cell Reports ; 15(1): 214-225, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32559457

RESUMEN

Induced pluripotent stem cells (iPSCs) from diverse humans offer the potential to study human functional variation in controlled culture environments. A portion of this variation originates from an ancient admixture between modern humans and Neandertals, which introduced alleles that left a phenotypic legacy on individual humans today. Here, we show that a large iPSC repository harbors extensive Neandertal DNA, including alleles that contribute to human phenotypes and diseases, encode hundreds of amino acid changes, and alter gene expression in specific tissues. We provide a database of the inferred introgressed Neandertal alleles for each individual iPSC line, together with the annotation of the predicted functional variants. We also show that transcriptomic data from organoids generated from iPSCs can be used to track Neandertal-derived RNA over developmental processes. Human iPSC resources provide an opportunity to experimentally explore Neandertal DNA function and its contribution to present-day phenotypes, and potentially study Neandertal traits.


Asunto(s)
ADN/genética , Hombre de Neandertal/genética , Células Madre/metabolismo , Alelos , Animales , Encéfalo/metabolismo , Línea Celular , Haplotipos/genética , Humanos , Fenotipo , Células Madre Pluripotentes/citología , ARN/metabolismo , Células Madre/citología
12.
Curr Biol ; 29(1): 120-127.e5, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554901

RESUMEN

One of the features that distinguishes modern humans from our extinct relatives and ancestors is a globular shape of the braincase [1-4]. As the endocranium closely mirrors the outer shape of the brain, these differences might reflect altered neural architecture [4, 5]. However, in the absence of fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain elusive. To better understand the biological foundations of modern human endocranial shape, we turn to our closest extinct relatives: the Neandertals. Interbreeding between modern humans and Neandertals has resulted in introgressed fragments of Neandertal DNA in the genomes of present-day non-Africans [6, 7]. Based on shape analyses of fossil skull endocasts, we derive a measure of endocranial globularity from structural MRI scans of thousands of modern humans and study the effects of introgressed fragments of Neandertal DNA on this phenotype. We find that Neandertal alleles on chromosomes 1 and 18 are associated with reduced endocranial globularity. These alleles influence expression of two nearby genes, UBR4 and PHLPP1, which are involved in neurogenesis and myelination, respectively. Our findings show how integration of fossil skull data with archaic genomics and neuroimaging can suggest developmental mechanisms that may contribute to the unique modern human endocranial shape.


Asunto(s)
Evolución Biológica , Hibridación Genética , Hombre de Neandertal/anatomía & histología , Cráneo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Fósiles , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Fenotipo , Adulto Joven
13.
Oncogene ; 37(47): 6136-6151, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29995873

RESUMEN

Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.


Asunto(s)
Melanoma/genética , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Regulación hacia Abajo/genética , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Factor de Transcripción Asociado a Microftalmía/genética , Persona de Mediana Edad , Mutación/genética , Nevo Pigmentado/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
14.
Curr Opin Genet Dev ; 53: 1-8, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29894925

RESUMEN

The sequencing of ancient DNA from archaic humans-Neanderthals and Denisovans-has revealed that modern and archaic humans interbred at least twice during the Pleistocene. The field of human paleogenomics has now turned its attention towards understanding the nature of this genetic legacy in the gene pool of present-day humans. What exactly did modern humans obtain from interbreeding with Neanderthals and Denisovans? Was the introgressed genetic material beneficial, neutral or maladaptive? Can differences in phenotypes among present-day human populations be explained by archaic human introgression? These questions are of prime importance for our understanding of recent human evolution, but will require careful computational modeling and extensive functional assays before they can be answered in full. Here, we review the recent literature characterizing introgressed DNA and the likely biological consequences for their modern human carriers. We focus particularly on archaic human haplotypes that were beneficial to modern humans as they expanded across the globe, and on ways to understand how populations harboring these haplotypes evolved over time.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Evolución Molecular , Hominidae/genética , Animales , ADN Antiguo , Genética de Población , Genoma Humano/genética , Haplotipos , Humanos , Hombre de Neandertal/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-29162497

RESUMEN

Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies.


Asunto(s)
Proteínas de Peces/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Oryzias/genética , Neoplasias Cutáneas/genética , Transcriptoma , Factores de Edad , Animales , Animales Modificados Genéticamente , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias Cutáneas/patología
16.
Am J Hum Genet ; 101(4): 578-589, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985494

RESUMEN

Assessing the genetic contribution of Neanderthals to non-disease phenotypes in modern humans has been difficult because of the absence of large cohorts for which common phenotype information is available. Using baseline phenotypes collected for 112,000 individuals by the UK Biobank, we can now elaborate on previous findings that identified associations between signatures of positive selection on Neanderthal DNA and various modern human traits but not any specific phenotypic consequences. Here, we show that Neanderthal DNA affects skin tone and hair color, height, sleeping patterns, mood, and smoking status in present-day Europeans. Interestingly, multiple Neanderthal alleles at different loci contribute to skin and hair color in present-day Europeans, and these Neanderthal alleles contribute to both lighter and darker skin tones and hair color, suggesting that Neanderthals themselves were most likely variable in these traits.


Asunto(s)
Evolución Biológica , Hombre de Neandertal/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Animales , Estudios de Cohortes , Frecuencia de los Genes , Genoma Humano , Color del Cabello , Haplotipos , Humanos , Desequilibrio de Ligamiento , Filogenia , Pigmentación de la Piel
17.
Science ; 358(6363): 655-658, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28982794

RESUMEN

To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases.


Asunto(s)
Evolución Biológica , Hombre de Neandertal/genética , Alelos , Animales , Cuevas , Croacia , ADN Antiguo , Genoma , Humanos
18.
BMC Evol Biol ; 17(1): 179, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778150

RESUMEN

BACKGROUND: Small insertions and deletions occur in humans at a lower rate compared to nucleotide changes, but evolve under more constraint than nucleotide changes. While the evolution of insertions and deletions have been investigated using ape outgroups, the now available genome of a Neandertal can shed light on the evolution of indels in more recent times. RESULTS: We used the Neandertal genome together with several primate outgroup genomes to differentiate between human insertion/deletion changes that likely occurred before the split from Neandertals and those that likely arose later. Changes that pre-date the split from Neandertals show a smaller proportion of deletions than those that occurred later. The presence of a Neandertal-shared allele in Europeans or Asians but the absence in Africans was used to detect putatively introgressed indels in Europeans and Asians. A larger proportion of these variants reside in intergenic regions compared to other modern human variants, and some variants are linked to SNPs that have been associated with traits in modern humans. CONCLUSIONS: Our results are in agreement with earlier results that suggested that deletions evolve under more constraint than insertions. When considering Neandertal introgressed variants, we find some evidence that negative selection affected these variants more than other variants segregating in modern humans. Among introgressed variants we also identify indels that may influence the phenotype of their carriers. In particular an introgressed deletion associated with a decrease in the time to menarche may constitute an example of a former Neandertal-specific trait contributing to modern human phenotypic diversity.


Asunto(s)
Evolución Molecular , Genoma , Mutación INDEL/genética , Hombre de Neandertal/genética , Animales , Frecuencia de los Genes/genética , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Primates/genética
19.
Genome Res ; 27(9): 1563-1572, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28720580

RESUMEN

Natural selection that affected modern humans early in their evolution has likely shaped some of the traits that set present-day humans apart from their closest extinct and living relatives. The ability to detect ancient natural selection in the human genome could provide insights into the molecular basis for these human-specific traits. Here, we introduce a method for detecting ancient selective sweeps by scanning for extended genomic regions where our closest extinct relatives, Neandertals and Denisovans, fall outside of the present-day human variation. Regions that are unusually long indicate the presence of lineages that reached fixation in the human population faster than expected under neutral evolution. Using simulations, we show that the method is able to detect ancient events of positive selection and that it can differentiate those from background selection. Applying our method to the 1000 Genomes data set, we find evidence for ancient selective sweeps favoring regulatory changes and present a list of genomic regions that are predicted to underlie positively selected human specific traits.


Asunto(s)
Evolución Molecular , Genética de Población , Hominidae/genética , Selección Genética/genética , Animales , Genoma Humano/genética , Humanos , Hombre de Neandertal/genética
20.
Genome Biol ; 18(1): 61, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28366169

RESUMEN

BACKGROUND: Admixture between early modern humans and Neandertals approximately 50,000-60,000 years ago has resulted in 1.5-4% Neandertal ancestry in the genomes of present-day non-Africans. Evidence is accumulating that some of these archaic alleles are advantageous for modern humans, while others are deleterious; however, the major mechanism by which these archaic alleles act has not been fully explored. RESULTS: Here we assess the contributions of introgressed non-synonymous and regulatory variants to modern human protein and gene expression variation. We show that gene expression changes are more often associated with Neandertal ancestry than expected, and that the introgressed non-synonymous variants tend to have less predicted functional effect on modern human proteins than mutations that arose on the human lineage. Conversely, introgressed alleles contribute proportionally more to expression variation than non-introgressed alleles. CONCLUSIONS: Our results suggest that the major influence of Neandertal introgressed alleles is through their effects on gene regulation.


Asunto(s)
Evolución Molecular , Hombre de Neandertal/genética , Alelos , Secuencia de Aminoácidos , Animales , Expresión Génica , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Familia de Multigenes , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA