Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 46(12): 1820-1825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044101

RESUMEN

The polarity of the biological membrane, or lipid order, regulates many cellular events. It is generally believed that the plasma membrane polarity is regulated according to cell type and function, sometimes even within a cell. Neurons have a variety of functionally specialized subregions, each of which bears distinct proteins and lipids, and the membrane polarity of the subregions may differ accordingly. However, no direct experimental evidence of it has been presented to date. In the present study, we used a cell-impermeable solvatochromic membrane probe NR12A to investigate the local polarity of the plasma membrane of neurons. Both in hippocampal and cerebellar granule neurons, growth cones have higher membrane polarity than the cell body. In addition, the overall variation in the polarity value of each pixel was greater in the growth cone than in cell bodies, suggesting that the lateral diffusion and/or dynamics of the growth cone membrane are greater than other parts of the neuron. These tendencies were much less notably observed in the lamellipodia of a non-neuronal cell. Our results suggest that the membrane polarity of neuronal growth cones is unique and this characteristic may be important for its structure and function.


Asunto(s)
Cuerpo Celular , Conos de Crecimiento , Neuronas/metabolismo , Membrana Celular , Hipocampo , Células Cultivadas
2.
Anal Chem ; 95(22): 8512-8521, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229557

RESUMEN

A variety of protein tags are available for genetically encoded protein labeling, which allow their precise localization and tracking inside the cells. A new dimension in protein imaging can be offered by combining protein tags with polarity-sensitive fluorescent probes, which provide information about local nanoscale environments of target proteins within the subcellular compartments (organelles). Here, we designed three fluorescent probes based on solvatochromic nile red dye, conjugated to a HaloTag reactive targeting group through polyethylene glycol linkers of varying lengths. The probe with medium linker length, NR12-Halo, was found to label specifically a large variety of proteins localized in defined cell compartments, such as plasma membranes (outer and inner leaflets), endoplasmic reticulum, Golgi apparatus, cytosol, microtubules, actin, and chromatin. Owing to its polarity-sensitive fluorophore, the probe clearly distinguished the proteins localized within apolar lipid membranes from other proteins. Moreover, it revealed dramatic changes in the environment during the life cycle of proteins from biosynthesis to their expected localization and, finally, to recycling inside lysosomes. Heterogeneity in the local polarity of some membrane proteins also suggested a formation of low-polar protein aggregates, for example, within cell-cell contacts. The approach also showed that mechanical stress (cell shrinking by osmotic shock) induced a general polarity decrease in membrane proteins, probably due to the condensation of biomolecules. Finally, the nanoenvironment of some membrane proteins was affected by a polyunsaturated fatty acid diet, which provided the bridge between organization of lipids and proteins. The developed solvatochromic HaloTag probe constitutes a promising tool for probing nanoscale environments of proteins and their interactions within subcellular structures.


Asunto(s)
Colorantes Fluorescentes , Orgánulos , Colorantes Fluorescentes/química , Orgánulos/química , Membrana Celular/metabolismo , Aparato de Golgi , Retículo Endoplásmico , Proteínas de la Membrana/metabolismo
3.
Open Biol ; 12(9): 220175, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099931

RESUMEN

The plasma membrane, as a highly complex cell organelle, serves as a crucial platform for a multitude of cellular processes. Its collective biophysical properties are largely determined by the structural diversity of the different lipid species it accommodates. Therefore, a detailed investigation of biophysical properties of the plasma membrane is of utmost importance for a comprehensive understanding of biological processes occurring therein. During the past two decades, several environment-sensitive probes have been developed and become popular tools to investigate membrane properties. Although these probes are assumed to report on membrane order in similar ways, their individual mechanisms remain to be elucidated. In this study, using model membrane systems, we characterized the probes Pro12A, NR12S and NR12A in depth and examined their sensitivity to parameters with potential biological implications, such as the degree of lipid saturation, double bond position and configuration (cis versus trans), phospholipid headgroup and cholesterol content. Applying spectral imaging together with atomistic molecular dynamics simulations and time-dependent fluorescent shift analyses, we unravelled individual sensitivities of these probes to different biophysical properties, their distinct localizations and specific relaxation processes in membranes. Overall, Pro12A, NR12S and NR12A serve together as a toolbox with a wide range of applications allowing to select the most appropriate probe for each specific research question.


Asunto(s)
Colorantes Fluorescentes , Simulación de Dinámica Molecular , Membrana Celular/química , Colesterol , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química
4.
Elife ; 112022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102623

RESUMEN

Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.


Asunto(s)
Vías Secretoras , Esfingomielinas , Animales , Colesterol , Glicerofosfolípidos , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
5.
J Am Chem Soc ; 144(39): 18043-18053, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36153973

RESUMEN

Super-resolution fluorescence imaging based on single-molecule localization microscopy (SMLM) enables visualizing cellular structures with nanometric precision. However, its spatial and temporal resolution largely relies on the brightness of ON/OFF switchable fluorescent dyes. Moreover, in cell plasma membranes, the single-molecule localization is hampered by the fast lateral diffusion of membrane probes. Here, to address these two fundamental problems, we propose a concept of ON/OFF switchable probes for SMLM (points accumulation for imaging in nanoscale topography, PAINT) based on fluorogenic dimers of bright cyanine dyes. In these probes, the two cyanine units connected with a linker were modified at their extremities with low-affinity membrane anchors. Being self-quenched in water due to intramolecular dye H-aggregation, they displayed light up on reversible binding to lipid membranes. The charged group in the linker further decreased the probe affinity to the lipid membranes, thus accelerating its dynamic reversible ON/OFF switching. The concept was validated on cyanines 3 and 5. SMLM of live cells revealed that the new probes provided higher brightness and ∼10-fold slower diffusion at the cell surface, compared to reference probes Nile Red and DiD, which boosted axial localization precision >3-fold down to 31 nm. The new probe allowed unprecedented observation of nanoscale fibrous protrusions on plasma membranes of live cells with 40 s time resolution, revealing their fast dynamics. Thus, going beyond the brightness limit of single switchable dyes by cooperative dequenching in fluorogenic dimers and slowing down probe diffusion in biomembranes open the route to significant enhancement of super-resolution fluorescence microscopy of live cells.


Asunto(s)
Colorantes Fluorescentes , Agua , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Lípidos , Microscopía Fluorescente/métodos
7.
Chem Sci ; 13(13): 3652-3660, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35432899

RESUMEN

Organelle-specific targeting enables increasing the therapeutic index of drugs and localizing probes for better visualization of cellular processes. Current targeting strategies require conjugation of a molecule of interest with organelle-targeting ligands. Here, we propose a concept of dynamic covalent targeting of organelles where the molecule is conjugated with its ligand directly inside live cells through a dynamic covalent bond. For this purpose, we prepared a series of organelle-targeting ligands with a hydrazide residue for reacting with dyes and drugs bearing a ketone group. We show that dynamic hydrazone bond can be formed between these hydrazide ligands and a ketone-functionalized Nile Red dye (NRK) in situ in model lipid membranes or nanoemulsion droplets. Fluorescence imaging in live cells reveals that the targeting hydrazide ligands can induce preferential localization of NRK dye and an anti-cancer drug doxorubicin in plasma membranes, mitochondria and lipid droplets. Thus, with help of the dynamic covalent targeting, it becomes possible to direct a given bioactive molecule to any desired organelle inside the cell without its initial functionalization by the targeting ligand. Localizing the same NRK dye in different organelles by the hydrazide ligands is found to affect drastically its photodynamic activity, with the most pronounced phototoxic effects in mitochondria and plasma membranes. The capacity of this approach to tune biological activity of molecules can improve efficacy of drugs and help to understand better their intracellular mechanisms.

8.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34939048

RESUMEN

Understanding the plasma membrane nanoscale organization and dynamics in living cells requires microscopy techniques with high spatial and temporal resolution that permit for long acquisition times and allow for the quantification of membrane biophysical properties, such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolutions, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dye is showcased by live-cell real-time three-dimensional STED recordings of bleb formation and lipid exchange during membrane fusion as well as by STED-fluorescence correlation spectroscopy experiments for the simultaneous quantification of membrane dynamics and lipid packing that correlate in model and live-cell membranes.

9.
J Am Chem Soc ; 143(2): 912-924, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33417447

RESUMEN

Biomembranes constitute a basis for all compartments of live cells, and therefore, the monitoring of their lipid organization is essential for understanding cell status and activity. However, the sensing and imaging of lipid organization specifically in different organelles of live cells remain challenging. Here, we designed an array of solvatochromic probes based on Nile Red bearing ligands for specific targeting of the endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, plasma membranes, and lipid droplets. These polarity-sensitive probes detected variations in the lipid order by changing their emission maximum, as evidenced by fluorescence spectroscopy in model membranes. In colocalization microscopy experiments with reference organelle markers, they exhibited good organelle selectivity. Using two-color fluorescence microscopy, the new probes enabled imaging of the local polarity of organelles in live cells. To exclude the biased effect of the probe design on the sensitivity to the membrane properties, we calibrated all probes in model membranes under the microscope, which enabled the first quantitative description of the lipid order in each organelle of interest. Cholesterol extraction/enrichment confirmed the capacity of the probes to sense the lipid order, revealing that organelles poor in cholesterol are particularly affected by its enrichment. The probes also revealed that oxidative and mechanical stresses produced changes in the local polarity and lipid order that were characteristic for each organelle, with mitochondria and lysosomes being particularly stress sensitive. The new probes constitute a powerful toolbox for monitoring the response of the cells to physical and chemical stimuli at the level of membranes of individual organelles, which remains an underexplored direction in cellular research.


Asunto(s)
Colorantes Fluorescentes/química , Lípidos/análisis , Imagen Óptica , Orgánulos/química , Línea Celular Tumoral , Humanos , Estructura Molecular , Oxidación-Reducción , Espectrometría de Fluorescencia , Estrés Mecánico
10.
Anal Chem ; 92(21): 14798-14805, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33044816

RESUMEN

Imaging of biological membranes by environmentally sensitive solvatochromic probes, such as Laurdan, provides information about the organization of lipids, their ordering, and their uneven distribution. To address a key drawback of Laurdan linked to its rapid internalization and subsequent labeling of internal membranes, we redesigned it by introducing a membrane anchor group based on negatively charged sulfonate and dodecyl chain. The obtained probe, Pro12A, stains exclusively the outer leaflet of lipid bilayers of liposomes, as evidenced by leaflet-specific fluorescence quenching with a viologen derivative, and shows higher fluorescence brightness than Laurdan. Pro12A also exhibits stronger spectral change between liquid-ordered and liquid-disordered phases in model membranes and distinguishes better lipid domains in giant plasma membrane vesicles (GPMVs) than Laurdan. In live cells, it stains exclusively the cell plasma membranes, in contrast to Laurdan and its carboxylate analogue C-Laurdan. Owing to its outer leaflet binding, Pro12A is much more sensitive to cholesterol extraction than Laurdan, which is redistributed within both plasma membrane leaflets and intracellular membranes. Finally, its operating range in the blue spectral region ensures the absence of crosstalk with a number of orange/red fluorescent proteins and dyes. Thus, Pro12A will enable accurate multicolor imaging of lipid organization of cell plasma membranes in the presence of fluorescently tagged proteins of interest, which will open new opportunities in biomembrane research.


Asunto(s)
2-Naftilamina/análogos & derivados , Membrana Celular/metabolismo , Lauratos/química , Lauratos/metabolismo , Metabolismo de los Lípidos , Imagen Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Animales , Células CHO , Ácidos Carboxílicos/química , Color , Cricetulus , Solventes/química
11.
Anal Chem ; 92(9): 6512-6520, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32153188

RESUMEN

Solvatochromic dyes enable sensing and imaging of biomolecular organization in living systems by monitoring local polarity (lipophilicity), but most such dyes suffer from limited brightness, photostability, lack of a convenient spectral range, and limited sensitivity to polarity. Moreover, the presence of an electron acceptor group, typically a carbonyl, in its push-pull structure raises concerns about its potential chemical reactivity within the biological environment. In order to achieve robust bioimaging, we synthesized a push-pull pyrene probe bearing a ketone acceptor group (PK) and compared it with a recently developed aldehyde analogue (PA). We found that in live cells the aldehyde analogue PA transforms slowly (in ∼100 min) into blue-emissive species, assigned to in situ formation of an imine analogue, whereas the PK probe is stable in the presence of primary amines and inside cells. Like the parent PA, the new probe shows strong solvatochromism and an emission color response to lipid order in membranes (ordered vs disordered liquid phases), while its blue-shifted absorption is more optimal for excitation with 400 nm light sources. In live cells, the PK probe enables high-contrast polarity mapping of organelles using two-color ratiometric detection, suggesting that polarity increases in the following order: lipid droplets < plasma membranes < endoplasmic reticulum. In the zebrafish embryo, polarity imaging with the PK probe reveals a new dimension in visualizing the organization of tissues-lipophilicity distribution, where biomembranes, lipid droplets, cells, yolk, extracellular space, and newly formed organs are revealed by specific emission wavelengths of the probe. The newly developed probe and the proposed approach of polarity mapping open new opportunities for bioimaging at the cellular and animal level.


Asunto(s)
Colorantes Fluorescentes/química , Pirenos/química , Animales , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Imagen Óptica , Pez Cebra/embriología
12.
Angew Chem Int Ed Engl ; 58(42): 14920-14924, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31392763

RESUMEN

Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super-resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane-targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long-chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short-chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.


Asunto(s)
Membrana Celular/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Oxazinas/química , Imagen Individual de Molécula/métodos , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...