Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(39): e2302617, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37264519

RESUMEN

To ensure the safety and performance of lithium-ion batteries (LIBs), a rational design and optimization of suitable cathode materials are crucial. Lithium nickel cobalt manganese oxides (NCM) represent one of the most popular cathode materials for commercial LIBs. However, they are limited by several critical issues, such as transition metal dissolution, formation of an unstable cathode-electrolyte interphase (CEI) layer, chemical instability upon air exposure, and mechanical instability. In this work, coating fabricated by self-assembly of osmotically delaminated sodium fluorohectorite (Hec) nanosheets onto NCM (Hec-NCM) in a simple and technically benign aqueous wet-coating process is reported first. Complete wrapping of NCM by high aspect ratio (>10 000) nanosheets is enabled through an electrostatic attraction between Hec nanosheets and NCM as well as by the superior mechanical flexibility of Hec nanosheets. The coating significantly suppresses mechanical degradation while forming a multi-functional CEI layer. Consequently, Hec-NCM delivers outstanding capacity retention for 300 cycles. Furthermore, due to the exceptional gas barrier properties of the few-layer Hec-coating, the electrochemical performance of Hec-NCM is maintained even after 6 months of exposure to the ambient atmosphere. These findings suggest a new direction of significantly improving the long-term stability and activity of cathode materials by creating an artificial CEI layer.

2.
Macromol Rapid Commun ; 43(19): e2200307, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35511792

RESUMEN

Self-healing polymer-carbon composites are seen as promising materials for future electronic devices, which must be able to restore not only their structural integrity but also electrical performance after cracking and wear. Despite multiple reports about self-healing conductive elements, there is a lack of a broad fundamental understanding of correlation between viscoelasticity of such composites, their electrical properties, and self-healing of their mechanical as well as electrical properties. Here, it is reported thorough investigation of electromechanical properties of blends of carbon black (CB) as conductive filler and viscoelastic polymers (polydimethylsiloxanes (PDMS) and polyborosiloxane (PBS)) with different relaxation times as matrices. It is shown that behavior of composites depends strongly on the viscoelastic properties of polymers. Low molecular polymer composite possesses high conductivity due to strong filler network formation, quick electrical, and mechanical properties restoration, but for this the ability is sacrificed to flow and ductility at large deformation (material is brittle). In contrary, high relaxation time polymer composite behaves elastically on small time and flows at large time scale due to weak filler network and can heal. However, the electrical properties are worse than that of carbon and viscous polymer and degrade with time.

3.
Membranes (Basel) ; 9(5)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067800

RESUMEN

In this study, we introduce a through-plane electrochemical measurement cell for proton conducting polymer membranes (PEM) with the ability to vary temperature and humidity. Model Nafion and 3M membranes, as well as anisotropic composite membranes, were used to compare through plane and in plane conductivity. Electrochemical impedance spectroscopy (EIS) was applied to evaluate the proton conductivity of bare proton exchange membranes. In the Nyquist plots, all membranes showed a straight line with an angle of 60-70 degrees to the Z'-axis. Equivalent circuit modeling and linear extrapolation of the impedance data were compared to extract the membrane resistance. System and cell parameters such as high frequency inductance, contact resistance and pressure, interfacial capacitance were observed and instrumentally minimized. Material-related effects, such as swelling of the membranes and indentation of the platinum mesh electrodes were examined thoroughly to receive a reliable through-plane conductivity. The received data for model Nafion and 3M membranes were in accordance with literature values for in-plane and through-plane conductivity of membrane electrode assemblies. Anisotropic composite membranes underlined the importance of a sophisticated measurement technique that is able to separate the in-plane and through-plane effects in polymer electrolytes.

4.
ACS Omega ; 3(9): 11290-11299, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459238

RESUMEN

Here, we provide a deeper insight into the state of sulfur confined in ultramicroporous carbon (UMC) and clarify its electrochemical reaction mechanism with lithium by corroborating the results obtained using various experimental techniques, such as X-ray photoelectron spectroscopy, electron energy loss spectroscopy, in situ Raman spectroscopy, and in situ electrochemical impedance spectroscopy. In combination, these results indicate that sulfur in UMC exists as linear polymeric sulfur rather than smaller allotropes. The electrochemical reactivity of lithium with sulfur confined in UMC (pore size ≤0.7 nm) is different from that of sulfur confined in microporous carbon (≤2 nm, or ultramicroporous carbon containing significant amount of micropores) and mesoporous carbon (>2 nm). The observed quasi-solid-state reaction of lithium with sulfur in UMC with a single voltage plateau during the discharge/charge process is due to the effective separation of solvent molecules from the active material. The size of carbon pores plays a vital role in determining the reaction path of lithium with sulfur confined in UMC.

5.
PLoS One ; 9(1): e86048, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465863

RESUMEN

Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6-10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.


Asunto(s)
Benzamidas/uso terapéutico , Dopamina/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Indoles/uso terapéutico , Neostriado/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Pirimidinas/uso terapéutico , alfa-Sinucleína/metabolismo , ortoaminobenzoatos/uso terapéutico , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Masculino , Neostriado/metabolismo , Neostriado/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...