Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474685

RESUMEN

Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A particles, i.e., MP, were exceedingly small, with 74% of them having a long diameter of 25 µm or less. The vertical distribution of type C, containing cuprous oxide, exhibited no depth dependence, with its dominant size being less than 7 µm. It was considered that the presence of type C was associated with a natural phenomenon of MP loss. To clarify this, polypropylene (PP) samples containing cuprous oxide were prepared, and their accelerated degradation behavior was studied using a novel enhanced degradation method employing a sulfate ion radical as an initiator. Infrared spectroscopy revealed the formation of a copper soap compound in seawater. Scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis indicated that the chemical reactions between Cl- and cuprous oxide produced Cu+ ions. The acceleration of degradation induced by the copper soap formed was studied through the changes in the number of PP chain scissions, revealing that the presence of type-C accelerated MP degradation.

2.
Sci Rep ; 14(1): 3902, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366080

RESUMEN

It is essential to develop a mechanism for lowering the molecular weight of polyolefins to achieve biodegradation in seawater. In this study, a polypropylene/polylactic acid blend sample was first subjected to photodegradation pretreatment, and it was confirmed that in pure water, the acid generated promotes the polypropylene degradation (autoxidation), while in alkaline seawater, the promotion was inhibited by a neutralization reaction. In the autoxidation of polyolefins in alkaline seawater, aqueous Cl- was also the inhibitor. However, we found that autoxidation could be initiated even in seawater by lowering the pH and using dissociation of ClOH (called blister degradation). The blister degradation mechanism enabled autoxidation, even in seawater, by taking advantage of the ability of diatoms to secrete transparent exopolymer particles (TEP) to prevent direct contact between the surface layer of polyolefins and alkaline seawater. We named blister degradation in seawater with diatoms as bio-blister degradation and confirmed its manifestation using linear low-density polyethylene (LLDPE)/starch samples by SEM, IR, DSC and GPC analysis.

3.
Polymers (Basel) ; 16(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276701

RESUMEN

The alteration of an ultraviolet light absorber (UVA: UV-326) in polymers (PP, HDPE, LDPE, PLA, and PS) over time during degradation was studied using an enhanced degradation method (EDM) involving sulfate ion radicals in seawater. The EDM was employed to homogeneously degrade the entire polymer samples containing the UVA. The PP and PS samples containing 5-phr (phr: per hundred resin) UVA films underwent rapid whitening, characterized by the formation of numerous grooves or crushed particles. Notably, the UVA loss rate in PS, with the higher glass transition temperature (Tg), was considerably slower. The behavior of crystalline polymers, with the exception of PS, was analogous in terms of the change in UVA loss rate over the course of degradation. The significant increase in the initial loss rate observed during EDM degradation was due to microplasticization. A similar increase in microplasticization rate occurred with PS; however, the intermolecular interaction between UVA and PS did not result in as pronounced an increase in loss rate as observed in other polymers. Importantly, the chemical structure of UVA remained unaltered during EDM degradation. These findings revealed that the primary cause of UVA loss was leaching from the polymer matrix.

4.
Sci Rep ; 13(1): 4247, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918647

RESUMEN

Various tiny plastic particles were retrieved from the sea and studied using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis to prepare realistic reference microplastics (MP). Most of the MP exhibited a diameter of < 20 × 10-6 m and 0.1-0.2 molar ratios of oxygen to carbon atoms (O/C), indicating that they primarily comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS). It took a long time to reproduce such O/C ratios in standard laboratory weathering methods. For example, degrading of 30 × 30 × 0.060 mm PP film required 75 days for the 0.1 ratio, even with an advanced oxidation process (AOP) using a sulfate radical anion (SO4·-) initiator in distilled water at 65 °C. However, seawater drastically improved the PP degradation performance of AOP under a weak acid condition to achieve the 0.1 ratio of PP film in only 15 days. The combination of seawater and the SO4·- initiator accelerated the degradation process and showed that the MP's size could be controlled according to the degradation time.

5.
Biodegradation ; 33(3): 301-316, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35499742

RESUMEN

Three different fungi were tested for their ability to degrade 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid and for the role of laccases and cytochromes P450-type in this process. We studied a white-rot fungus Rigidoporus sp. FMD21, which has a high laccase activity, for its efficiency to degrade these herbicides. A positive correlation was found between its laccase activity and the corresponding herbicide degradation rate. Even more, the doubling of the enzyme activity in this phase corresponded with a doubling of the herbicide degradation rate. It is, therefore, tempting to speculate that laccase is the most dominant enzyme in the degradation of 2,4-D and 2,4,5-T under these conditions. In addition, it was shown that Rigidoporus sp. FMD21 partly relies on cytochromes P450-type for the breakdown of the herbicides as well. Two filamentous fungi were isolated from soil contaminated with herbicides and dioxins located at Bien Hoa airbase. They belong to genera Fusarium and Verticillium of the phylum Ascomycota as judged by their 18S rRNA gene sequences. Both isolated fungi were able to degrade the herbicides but with different rates. Their laccase activity, however, was very low and did not correlate with the rate of breakdown of the herbicides. These data indicate that the white-rot fungus most likely synthesizes laccase and cytochromes P450-type for the breakdown of the herbicides, while the types of enzyme used for the breakdown of the herbicides by the two Ascomycota remain unclear.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Ácido 2,4,5-Triclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Biodegradación Ambiental , Citocromos/metabolismo , Hongos/metabolismo , Herbicidas/metabolismo , Lacasa/metabolismo , Vietnam
6.
Sensors (Basel) ; 13(6): 7813-26, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23778193

RESUMEN

Platinum coated by silver nanoparticles was synthesized, which displays a unique structure where polycrystalline platinum particles are completely encapsulated in continuous monocrystalline silver shells. These particles display accentuated electronic properties, where the silver shells gain electron density from the platinum cores, imparting enhanced properties such as oxidation resistance. This electron transfer phenomenon is highly interfacial in nature, and the degree of electron transfer decreases as the thickness of silver shell increases. The nanoparticle structure and electronic properties are studied and the implication to creating sensing probes with enhanced robustness, sensitivity and controllable plasmonic properties is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA