Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 644: 123349, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37633540

RESUMEN

TAK-441 is a potent inhibitor of the hedgehog pathway (IC50 4.4 nM) developed for the treatment of basal cell carcinoma that is active against the vismodegib-resistant Smoothened receptor D473H mutant. The objective of this study was to develop a micelle-based formulation of TAK-441 using D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and to investigate its cutaneous delivery and biodistribution. The micelles were prepared using solvent evaporation and incorporation of TAK-441 in the TPGS micelles increased aqueous solubility ∼40-fold. The optimal formulation, a 3% HPMC hydrogel of TAK-441 loaded TPGS micelles, retained ∼92% of the initial TAK-441 content (2.5 mgTAK-441/g) after storage at 4 °C for 6 months. Finite dose experiments using human skin demonstrated that this formulation resulted in significantly greater cutaneous deposition of TAK-441 after 12 h than a non-micelle control formulation, (0.40 ± 0.11 µg/cm2 and 0.05 ± 0.02 µg/cm2, respectively) - no transdermal permeation was observed. The cutaneous biodistribution profile demonstrated that TAK-441 was predominantly delivered to the viable epidermis and upper dermis. Delivery from the HPMC hydrogel formulation resulted in TAK-441 epidermal concentrations that were several thousand-fold higher than the IC50, with almost negligible transdermal permeation, thereby decreasing the risk of systemic side effects in vivo.


Asunto(s)
Antineoplásicos , Proteínas Hedgehog , Humanos , Porcinos , Animales , Distribución Tisular , Piel , Polímeros , Hidrogeles , Micelas
2.
Pharmaceutics ; 14(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35057047

RESUMEN

In vitro transcribed messenger ribonucleic acid (mRNA) constitutes an emerging therapeutic class with several clinical applications. This study presents a systematic comparison of different technologies-intradermal injection, microneedle injection, jet injection, and fractional laser ablation-for the topical cutaneous delivery of mRNA. Delivery of Cy5 labeled mRNA and non-labeled enhanced green fluorescent protein (eGFP) expressing mRNA was investigated in a viable ex vivo porcine skin model and monitored for 48 h. Forty 10 µm-thick horizontal sections were prepared from each skin sample and Cy5 labeled mRNA or eGFP expression visualized as a function of depth by confocal laser scanning microscopy and immunohistochemistry. A pixel-based method was used to create a semi-quantitative biodistribution profile. Different spatial distributions of Cy5 labeled mRNA and eGFP expression were observed, depending on the delivery modality; localization of eGFP expression pointed to the cells responsible. Delivery efficiencies and knowledge of delivery sites can facilitate development of efficient, targeted mRNA-based therapeutics.

3.
Eur J Pharm Sci ; 111: 195-204, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974387

RESUMEN

Atovaquone in combination with proguanil hydrochloride, marketed as Malarone® tablets by GlaxoSmithKline (GSK), is prescribed for the treatment of malaria. High dose and poor bioavailability are the main hurdles associated with atovaquone oral therapy. The present study reports development of atovaquone nanoparticles, using in house designed and fabricated electrospraying equipment, and the assessment of bioavailability and therapeutic efficacy of the nanoparticles after oral administration. Solid nanoparticles of atovaquone were successfully produced by electrospraying and were characterized for particle size and flow properties. Differential Scanning Calorimetry, X-ray Diffraction, Fourier Transform Infrared Spectroscopy studies were also carried out. Atovaquone nanoparticles along with proguanil hydrochloride and a suitable wetting agent were filled in size 2 hard gelatin capsules. The formulation was compared with Malarone® tablets (GSK) and Mepron® suspension (GSK) in terms of in vitro release profile and in vivo pharmacokinetic studies. It showed 2.9-fold and 1.8-fold improved bioavailability in rats compared to Malarone® tablets and Mepron® suspension respectively. Therapeutic efficacy of the formulation was determined using modified Peter's 4-day suppressive tests and clinical simulation studies using Plasmodium berghei ANKA infected Swiss mice and compared to Malarone®. The developed formulation showed a 128-fold dose reduction in the modified Peter's 4-day suppressive tests and 32-fold dose reduction in clinical simulation studies. Given that only one capsule a day of developed formulation is required to be administered orally compared to 4 Malarone® tablets once a day and that too at a significantly reduced dose, this nanoparticle formulation will definitely reduce the side-effects of the treatment and is also likely to increase patient compliance.


Asunto(s)
Antimaláricos/farmacocinética , Atovacuona/farmacocinética , Malaria/tratamiento farmacológico , Proguanil/farmacocinética , Administración Oral , Animales , Antimaláricos/química , Antimaláricos/uso terapéutico , Atovacuona/química , Atovacuona/uso terapéutico , Disponibilidad Biológica , Combinación de Medicamentos , Malaria/parasitología , Ratones , Plasmodium berghei , Proguanil/química , Proguanil/uso terapéutico , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...