Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(2): 421-433, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35953646

RESUMEN

The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Mutagénesis Sitio-Dirigida , Péptidos/química , Receptores de Glucagón/genética , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Transducción de Señal , Factores de Transcripción
2.
Trends Pharmacol Sci ; 43(4): 321-334, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35078643

RESUMEN

Class B1 G protein-coupled receptors (GPCRs) play important roles in human physiology and disease pathology. Using cryo-electron microscopy (cryo-EM) and X-ray crystallography, the 3D structures of all 15 members of this receptor subfamily have been determined in recent years at the near-atomic level. Although they share many structural commonalities, they show distinct features in terms of ligand recognition and receptor activation. In-depth structural analyses have yielded valuable insights into the N termini of both peptide hormones and cognate receptors, the outward movement of transmembrane helix 6 (TM6), the allosteric modulation sites located in the transmembrane domain (TMD), and the constitutive signaling bias mediated by receptor splice variants. These provide new directions for the design of better therapeutic agents, thereby making these targets more druggable.


Asunto(s)
Receptores Acoplados a Proteínas G , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Ligandos , Dominios Proteicos , Receptores Acoplados a Proteínas G/química
3.
Biochem Pharmacol ; 192: 114715, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339714

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and ß-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of ß-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or ß-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.


Asunto(s)
Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Células COS , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Polipéptido Inhibidor Gástrico/química , Polipéptido Inhibidor Gástrico/farmacología , Células HEK293 , Humanos , Mutación/fisiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Estructura Secundaria de Proteína , Receptores de la Hormona Gastrointestinal/química
4.
Signal Transduct Target Ther ; 6(1): 7, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414387

RESUMEN

As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Receptores Acoplados a Proteínas G , Animales , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad
5.
Biochem Pharmacol ; 180: 114150, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682761

RESUMEN

Metabolic diseases such as obesity, diabetes, and their comorbidities have converged as one of the most serious health concerns on a global scale. Selective glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists are one of the major therapeutics for type 2 diabetes and obesity. Polypharmacological approaches that enable modulation of multiple metabolic targets in a single drug have emerged as a potential avenue to improve therapeutic outcomes. Among numerous peptides under development are those targeting the GLP-1R and either the glucagon receptor (GCGR), glucose-dependent insulinotropic peptide receptor (GIPR) or all 3 receptors, as dual- or tri- peptide agonists. Despite many of them entering into clinical trials, current development has been based on only a limited understanding of the spectrum of potential pharmacological properties of these ligands beyond binding selectivity. In the present study, we examined the potential for agonists that target both GLP-1R and GCGR to exhibit biased agonism, comparing activity across proximal activation of Gs protein, cAMP accumulation, pERK1/2 and ß-arrestin recruitment. Three distinct dual agonists that have different relative cAMP production potency for GLP-1R versus GCGR, "peptide 15", MEDI0382 and SAR425899, and one triagonist of the GLP-1R, GCGR and GIPR were examined. We demonstrated that all novel peptides have distinct biased agonism profiles relative to either of the cognate agonists of the receptors, and to each other. This is an important feature of the pharmacology of this drug class that needs to be considered alongside selectivity, bioavailability and pharmacokinetics for rational optimization of new therapeutics.


Asunto(s)
Péptido 1 Similar al Glucagón/agonistas , Oxintomodulina/farmacología , Péptidos/farmacología , Receptores de Glucagón/agonistas , Secuencia de Aminoácidos , Relación Dosis-Respuesta a Droga , Agonismo de Drogas , Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Humanos , Oxintomodulina/genética , Oxintomodulina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Receptores de Glucagón/metabolismo
6.
Biochem Pharmacol ; 177: 114001, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360365

RESUMEN

Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone with physiological roles in adipose tissue, the central nervous system and bone metabolism. While selective ligands for GIP receptor (GIPR) have not been advanced for disease treatment, dual and triple agonists of GIPR, in conjunction with that of glucagon-like peptide-1 (GLP-1) and glucagon receptors, are currently in clinical trials, with an expectation of enhanced efficacy beyond that of GLP-1 receptor (GLP-1R) agonist monotherapy for diabetic patients. Consequently, it is important to understand the pharmacological behavior of such drugs. In this study, we have explored signaling pathway specificity and the potential for biased agonism of mono-, dual- and tri-agonists of GIPR using human embryonic kidney 293 (HEK293) cells recombinantly expressing human GIPR or GLP-1R. Compared to GIP(1-42), the GIPR mono-agonists Pro3GIP and Lys3GIP are biased towards ERK1/2 phosphorylation (pERK1/2) relative to cAMP accumulation at GIPR, whereas the triple agonist at GLP-1R/GCGR/GIPR is biased towards pERK1/2 relative to ß-arrestin2 recruitment. Moreover, the dual GIPR/GLP-1R agonist, LY3298176, is biased towards pERK1/2 relative to cAMP accumulation at both GIPR and GLP-1R compared to their respective endogenous ligands. These data reveal novel pharmacological properties of potential therapeutic agents that may impact on diversity in clinical responses.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos/química , Péptidos/farmacología , Receptores de la Hormona Gastrointestinal/agonistas , Cromograninas/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Humanos , Radioisótopos de Yodo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo , beta-Arrestinas/metabolismo
7.
Pharmazie ; 73(6): 329-334, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29880085

RESUMEN

Aprepitant (APT), an antiemetic drug belonging to the class of substance P antagonists is efficiently used in both acute and delayed chemotherapy-induced nausea and vomiting. Nausea and vomiting induced by imatinib (IMA) as a chemotherapeutic drug could be reduced by APT. This study investigated the effect of APT on the pharmacokinetics of IMA and its major metabolite N-desmethyl imatinib (N-D IMA) in rats and the mechanism of this drug-drug interaction. The results indicated that after 3 days of pretreatment with APT (10 mg/kg), the blood concentration of IMA was decreased in both of oral and intravenous routes of IMA administration compared to vehicle treated rats, whereas the blood concentration of N-D IMA was not significantly changed. The total clearance (CL/F) of oral and intravenous given IMA was increased by 1.41 and 1.32-fold, and the bioavailability was greatly decreased about 30.43% and 24.40% respectively. At this time, the P-gp and the hepatic CYP3A1 were increased at both the mRNA and protein levels. These results demonstrated that ingestion of APT will decrease the bioavailability of IMA to a significant extent in rats and the drug-drug interaction between APT and IMA appears to be due to modulation of P-gp and CYP3A1.


Asunto(s)
Antieméticos/farmacología , Antineoplásicos/farmacocinética , Aprepitant/farmacología , Benzamidas/farmacocinética , Mesilato de Imatinib/farmacocinética , Piperazinas/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Administración Intravenosa , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Disponibilidad Biológica , Citocromo P-450 CYP3A/efectos de los fármacos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Mesilato de Imatinib/administración & dosificación , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Galen Med J ; 7: e692, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-34466413

RESUMEN

BACKGROUND: Metabolic syndrome is a group of different disorders mainly includes, insulin resistance, obesity, cerebrovascular disorders, dyslipidemia, which leads to increase mortality. Patients suffering from related psychotic disorders such as schizophrenia are at the higher risk of developing metabolic syndrome. The aim of this study was to evaluate the association between the first episode of schizophrenia, metabolic syndrome and insulin resistance-related proteins in blood and adipose tissue of mice. MATERIALS AND METHODS: Twelve, female Balb/c mice were randomly divided into two groups; one group was injected intraperitoneal MK-801(0.6mg/kg/d) to induce schizophrenia, and other group received the 0.9% normal saline for two weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance (OGT), and Homeostatic model assessment (HOMA), were observed. Blood and adipose tissue were collected and Western blotting was done to evaluate the insulin resistance related proteins (GGPPS, FAT, PTP-1B, GRK2, ATGL, FGF21, and PGC-1α) by using GAPDH as an internal standard. RESULTS: There was a significant increase in mean body weight in schizophrenic group (21.76 vs 22.81, P=004). On day 14, the FBG, insulin concentrations and Homeostatic model assessment and insulin resistance (HOME-IR) were high in schizhphrenic group vs control group, e.g. 5.3±0.6 vs 3.47±0.2 (P=0.0001), 28.9±2.2 vs 23.3±0.6 (P<0.005) and 9.2±1.3 vs 3.9±0.2 (P=0.0001) . Impaired glucose tolerance deranged from 4.8mmol/L to 6.4mmol/L. Western blotting showed a marked increase in the expression of GGPPS, FAT, ATGL, and FGF21 proteins in monocytes and PTP-1B, GRK2, and PGC-1α ratios in adipose tissues. CONCLUSION: There was a positive relation between schizophrenia and metabolic syndrome e.g. insulin resistance and obesity. Certain proteins in adipocytes and blood were responsible for causing insulin resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...