Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 190(1): 669-681, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35751603

RESUMEN

Gene expression in plant mitochondria is predominantly governed at the post-transcriptional level and relies mostly on nuclear-encoded proteins. However, the protein factors involved and the underlying molecular mechanisms are still not well understood. Here, we report on the function of the MITOCHONDRIAL STABILITY FACTOR 3 (MTSF3) protein, previously named EMBRYO DEFECTIVE 2794 (EMB2794), and show that it is essential for accumulation of the mitochondrial NADH dehydrogenase subunit 2 (nad2) transcript in Arabidopsis (Arabidopsis thaliana) but not for splicing of nad2 intron 2 as previously proposed. The MTSF3 gene encodes a pentatricopeptide repeat protein that localizes in the mitochondrion. An MTSF3 null mutation induces embryonic lethality, but viable mtsf3 mutant plants can be generated through partial complementation with the developmentally regulated ABSCISIC ACID INSENSITIVE3 promoter. Genetic analyses revealed growth retardation in rescued mtsf3 plants owing to the specific destabilization of mature nad2 mRNA and a nad2 precursor transcript bearing exons 3 to 5. Biochemical data demonstrate that MTSF3 protein specifically binds to the 3' terminus of nad2. Destabilization of nad2 mRNA induces a substantial decrease in complex I assembly and activity and overexpression of the alternative respiratory pathway. Our results support a role for MTSF3 protein in protecting two nad2 transcripts from degradation by mitochondrial exoribonucleases by binding to their 3' extremities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
2.
Mol Biol Evol ; 38(8): 3445-3458, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33878189

RESUMEN

The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.


Asunto(s)
Arabidopsis/genética , Genoma Mitocondrial , Selección Genética , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grupo Citocromo c/metabolismo , Desarrollo Embrionario , Biosíntesis de Proteínas , Empalme del ARN
3.
Proc Natl Acad Sci U S A ; 117(47): 29979-29987, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168708

RESUMEN

Production and expression of RNA requires the action of multiple RNA-binding proteins (RBPs). New RBPs are most often created by novel combinations of dedicated RNA-binding modules. However, recruiting existing genes to create new RBPs is also an important evolutionary strategy. In this report, we analyzed the eight-member uL18 ribosomal protein family in Arabidopsis uL18 proteins share a short structurally conserved domain that binds the 5S ribosomal RNA (rRNA) and allows its incorporation into ribosomes. Our results indicate that Arabidopsis uL18-Like proteins are targeted to either mitochondria or chloroplasts. While two members of the family are found in organelle ribosomes, we show here that two uL18-type proteins function as factors necessary for the splicing of certain mitochondrial and plastid group II introns. These two proteins do not cosediment with mitochondrial or plastid ribosomes but instead associate with the introns whose splicing they promote. Our study thus reveals that the RNA-binding capacity of uL18 ribosomal proteins has been repurposed to create factors that facilitate the splicing of organellar introns.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Empalme del ARN , Proteínas Ribosómicas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Intrones/genética , Mutación , Plantas Modificadas Genéticamente , ARN Ribosómico 5S/metabolismo , Proteínas Ribosómicas/genética
4.
J Exp Bot ; 69(21): 5131-5140, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30053059

RESUMEN

Group II introns are common features of most angiosperm mitochondrial genomes. Intron splicing is thus essential for the expression of mitochondrial genes and is facilitated by numerous nuclear-encoded proteins. However, the molecular mechanism and the protein cofactors involved in this complex process have not been fully elucidated. In this study, we characterized three new pentatricopeptide repeat (PPR) genes, called MISF26, MISF68, and MISF74, of Arabidopsis and showed they all function in group II intron splicing and plant development. The three PPR genes encode P-type PPR proteins that localize in the mitochondrion. Transcript analysis revealed that the splicing of a single intron is altered in misf26 mutants, while several mitochondrial intron splicing defects were detected in misf68 and misf74 mutants. To our knowledge, MISF68 and MISF74 are the first two PPR proteins implicated in the splicing of more than one intron in plant mitochondria, suggesting that they may facilitate splicing differently from other previously identified PPR splicing factors. The splicing defects in the misf mutants induce a significant decrease in complex I assembly and activity, and an overexpression of mRNAs of the alternative respiratory pathway. These results therefore reveal that nuclear encoded proteins MISF26, MISF68, and MISF74 are involved in splicing of a cohort of mitochondrial group II introns and thereby required for complex I biogenesis.


Asunto(s)
Arabidopsis/genética , Intrones/genética , Mitocondrias/metabolismo , Empalme del ARN/genética , Arabidopsis/metabolismo
5.
Nucleic Acids Res ; 46(12): 6218-6228, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29873797

RESUMEN

Messenger RNA translation is a complex process that is still poorly understood in eukaryotic organelles like mitochondria. Growing evidence indicates though that mitochondrial translation differs from its bacterial counterpart in many key aspects. In this analysis, we have used ribosome profiling technology to generate a genome-wide snapshot view of mitochondrial translation in Arabidopsis. We show that, unlike in humans, most Arabidopsis mitochondrial ribosome footprints measure 27 and 28 bases. We also reveal that respiratory subunits encoding mRNAs show much higher ribosome association than other mitochondrial mRNAs, implying that they are translated at higher levels. Homogenous ribosome densities were generally detected within each respiratory complex except for complex V, where higher ribosome coverage corroborated with higher requirements for specific subunits. In complex I respiratory mutants, a reorganization of mitochondrial mRNAs ribosome association was detected involving increased ribosome densities for certain ribosomal protein encoding transcripts and a reduction in translation of a few complex V mRNAs. Taken together, our observations reveal that plant mitochondrial translation is a dynamic process and that translational control is important for gene expression in plant mitochondria. This study paves the way for future advances in the understanding translation in higher plant mitochondria.


Asunto(s)
Arabidopsis/genética , Mitocondrias/genética , Biosíntesis de Proteínas , Complejo I de Transporte de Electrón/genética , Genes Mitocondriales , Mutación , Edición de ARN , ARN Mensajero/metabolismo , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 45(10): 6119-6134, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334831

RESUMEN

RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Proteína EWS de Unión a ARN/fisiología , ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Sitios de Unión , Sistemas CRISPR-Cas , Complejo I de Transporte de Electrón/metabolismo , Exones , Intrones/genética , Mitocondrias/genética , Plantas Modificadas Genéticamente , Unión Proteica , Empalme del ARN , Estabilidad del ARN , ARN Mitocondrial , Proteína EWS de Unión a ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
7.
BMC Genomics ; 15: 1005, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25410248

RESUMEN

BACKGROUND: To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. RESULTS: The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. CONCLUSIONS: This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.


Asunto(s)
Citosol/enzimología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glutamato-Amoníaco Ligasa/genética , Mutación/genética , Zea mays/enzimología , Zea mays/genética , Regulación Enzimológica de la Expresión Génica , Glutamato-Amoníaco Ligasa/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...