Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(31): 8288-8294, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37564419

RESUMEN

Optimisation of the affinity of lead compounds is a critical challenge in the identification of drug candidates and chemical probes and is a process that takes many years. Fragment-based drug discovery has become established as one of the methods of choice for drug discovery starting with small, low affinity compounds. Due to their low affinity, the evolution of fragments to desirable levels of affinity is often a key challenge. The accepted best method for increasing the potency of fragments is by iterative fragment growing, which can be very time consuming and complex. Here, we introduce a paradigm for fragment hit optimisation using poised DNA-encoded chemical libraries (DELs). The synthesis of a poised DEL, a partially constructed library that retains a reactive handle, allows the coupling of any active fragment for a specific target protein, allowing rapid discovery of potent ligands. This is illustrated for bromodomain-containing protein 4 (BRD4), in which a weakly binding fragment was coupled to a 42-member poised DEL via Suzuki-Miyaura cross coupling resulting in the identification of an inhibitor with 51 nM affinity in a single step, representing an increase in potency of several orders of magnitude from an original fragment. The potency of the compound was shown to arise from the synergistic combination of substructures, which would have been very difficult to discover by any other method and was rationalised by X-ray crystallography. The compound showed attractive lead-like properties suitable for further optimisation and demonstrated BRD4-dependent cellular pharmacology. This work demonstrates the power of poised DELs to rapidly optimise fragments, representing an attractive generic approach to drug discovery.

2.
Front Mol Biosci ; 9: 960248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589243

RESUMEN

None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.

3.
J Biol Chem ; 295(32): 10926-10939, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32471866

RESUMEN

Chemokines mediate leukocyte migration and homeostasis and are key targets in inflammatory diseases including atherosclerosis, cytokine storm, and chronic autoimmune disease. Chemokine redundancy and ensuing network robustness has frustrated therapeutic development. Salivary evasins from ticks bind multiple chemokines to overcome redundancy and are effective in several preclinical disease models. Their clinical development has not progressed because of concerns regarding potential immunogenicity, parenteral delivery, and cost. Peptides mimicking protein activity can overcome the perceived limitations of therapeutic proteins. Here we show that peptides possessing multiple chemokine-binding and anti-inflammatory activities can be developed from the chemokine-binding site of an evasin. We used hydrogen-deuterium exchange MS to map the binding interface of the evasin P672 that physically interacts with C-C motif chemokine ligand (CCL) 8 and synthesized a 16-mer peptide (BK1.1) based on this interface region in evasin P672. Fluorescent polarization and native MS approaches showed that BK1.1 binds CCL8, CCL7, and CCL18 and disrupts CCL8 homodimerization. We show that a BK1.1 derivative, BK1.3, has substantially improved ability to disrupt P672 binding to CCL8, CCL2, and CCL3 in an AlphaScreen assay. Using isothermal titration calorimetry, we show that BK1.3 directly binds CCL8. BK1.3 also has substantially improved ability to inhibit CCL8, CCL7, CCL2, and CCL3 chemotactic function in vitro We show that local as well as systemic administration of BK1.3 potently blocks inflammation in vivo Identification and characterization of the chemokine-binding interface of evasins could thus inspire the development of novel anti-inflammatory peptides that therapeutically target the chemokine network in inflammatory diseases.


Asunto(s)
Antiinflamatorios/química , Quimiocina CCL8/metabolismo , Péptidos/química , Ingeniería de Proteínas , Receptores de Quimiocina/metabolismo , Secuencia de Aminoácidos , Animales , Antiinflamatorios/farmacología , Dimerización , Humanos , Espectrometría de Masas/métodos , Péptidos/farmacología , Unión Proteica , Homología de Secuencia de Aminoácido , Garrapatas/metabolismo
4.
Adv Exp Med Biol ; 1062: 265-276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29845539

RESUMEN

Targeting the host-cell endoplasmic reticulum quality control (ERQC) pathway is an effective broad-spectrum antiviral strategy. The two ER resident α-glucosidases whose sequential action permits entry in this pathway are the targets of glucomimetic inhibitors. Knowledge of the molecular details of the ER α-glucosidase II (α-Glu II) structure was limited. We determined crystal structures of a trypsinolytic fragment of murine α-Glu II, alone and in complex with key catalytic cycle ligands, and four different broad-spectrum antiviral iminosugar inhibitors, two of which are currently in clinical trials against dengue fever. The structures highlight novel portions of the enzyme outside its catalytic pocket which contribute to its activity and substrate specificity. These crystal structures and hydrogen-deuterium exchange mass spectrometry of the murine ER alpha glucosidase II heterodimer uncover the quaternary arrangement of the enzyme's α- and ß-subunits, and suggest a conformational rearrangement of ER α-Glu II upon association of the enzyme with client glycoproteins.


Asunto(s)
Retículo Endoplásmico/enzimología , Virosis/enzimología , Virosis/inmunología , Fenómenos Fisiológicos de los Virus , alfa-Glucosidasas/química , alfa-Glucosidasas/inmunología , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno , Humanos , Virosis/genética , Virosis/virología , Virus/genética , alfa-Glucosidasas/genética
5.
Proc Natl Acad Sci U S A ; 113(32): E4630-8, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27462106

RESUMEN

The biosynthesis of enveloped viruses depends heavily on the host cell endoplasmic reticulum (ER) glycoprotein quality control (QC) machinery. This dependency exceeds the dependency of host glycoproteins, offering a window for the targeting of ERQC for the development of broad-spectrum antivirals. We determined small-angle X-ray scattering (SAXS) and crystal structures of the main ERQC enzyme, ER α-glucosidase II (α-GluII; from mouse), alone and in complex with key ligands of its catalytic cycle and antiviral iminosugars, including two that are in clinical trials for the treatment of dengue fever. The SAXS data capture the enzyme's quaternary structure and suggest a conformational rearrangement is needed for the simultaneous binding of a monoglucosylated glycan to both subunits. The X-ray structures with key catalytic cycle intermediates highlight that an insertion between the +1 and +2 subsites contributes to the enzyme's activity and substrate specificity, and reveal that the presence of d-mannose at the +1 subsite renders the acid catalyst less efficient during the cleavage of the monoglucosylated substrate. The complexes with iminosugar antivirals suggest that inhibitors targeting a conserved ring of aromatic residues between the α-GluII +1 and +2 subsites would have increased potency and selectivity, thus providing a template for further rational drug design.


Asunto(s)
Antivirales/farmacología , Retículo Endoplásmico/enzimología , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/química , Animales , Catálisis , Cristalografía por Rayos X , Ratones , Conformación Proteica , Subunidades de Proteína , Dispersión del Ángulo Pequeño , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...