RESUMEN
Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.
Asunto(s)
Cadmio , Larva , Contaminantes del Suelo , Suelo , Animales , Cadmio/química , Suelo/química , Contaminantes del Suelo/química , Concentración de Iones de Hidrógeno , Zea mays/química , AdsorciónRESUMEN
Phase transformation of ferrihydrite to more stable Fe (oxyhydr)oxides, catalyzed by iron(II) [Fe(II)], significantly influences the mobility of heavy metals [e.g., chromium (Cr)] associated with ferrihydrite. However, the impact of organic matter (OM) on the behavior of Cr(III) in the Fe(II)-catalyzed transformation of ferrihydrite and the underlying mechanisms are unclear. Here, the Fe(II)-catalyzed transformation of the coprecipitates of Fe(III), Cr(III), or rice straw-derived OM was studied at the nanoscale and molecular levels using Fe and Cr K-edge X-ray absorption spectroscopy and spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Batch extraction results suggested that the OM counteracted the enhancement of Cr(III) extractability during the Fe(II)-catalyzed transformation. Cs-STEM and XAS analysis suggested that Cr(III) could be incorporated into the goethite formed by Fe(II)-catalyzed ferrihydrite transformation, which, however, was inhibited by the OM. Furthermore, Cs-STEM analysis also provided direct nanoscale level evidence that residual ferrihydrite could re-immobilize the released Cr(III) during the Fe(II)-catalyzed transformation process. These results highlighted that the decreased extractability of Cr(III) mainly resulted from the inhibition of OM on the Fe(II)-catalyzed transformation of ferrihydrite to secondary Fe (oxyhydr)oxides, which facilitates insightful understanding and prediction of the geochemical cycling of Cr in soils with active redox dynamics.
Asunto(s)
Cromo , Compuestos Férricos , Óxidos , Catálisis , Compuestos FerrososRESUMEN
Metal fume pollutants of urban Kano, a city of over 10 million people, and widespread metal works have increased exposure with related health effects. Few data on metal fume toxicity and atmospheric levels have been documented in Nigeria and Kano in particular. Hence, the work was aimed at evaluating the metal fume toxicity to laboratory rat species for setting the permissible limit of exposure in urban Kano. The investigation involved the collection of metal welding fumes and subsequent laboratory analysis. Experimental animals were then exposed intratracheally to varying doses of the fumes which were equivalent to normal metal workers' daily routine of 2, 4, and 8 h for 3, 5, 10, and 20 years. Following euthanization, whole blood samples were collected and functions of liver and delta-aminolevunilic acid dehydratase were evaluated in the serum. Exposure to the fumes has caused significant mortality that was observed to be dose-dependent and statistically different (p < 0.05); moreover, the fumes had synergistically affected the functions of liver. In addition, the fumes had increased (statistically) the activity delta-aminolevinilic acid dehydratase. This has indicated that exposure to metal welding fumes being multi-elemental is toxic and had produced mortality at exposure to higher doses of metal welding fumes. It was therefore established from the study that no-observed-adverse-effect level (NOAEL) for metal welding fumes is 25.73 mg with LD50 of 270 mg which corresponds to the metal worker's 4-h shifts daily for 5 years under existing working conditions. It was recommended that regular monitoring should be put in place to limit exposure and extent of engagement in metal works beyond NOAEL levels.
Asunto(s)
Contaminantes Ocupacionales del Aire , Enfermedad Hepática Inducida por Sustancias y Drogas , Soldadura , Animales , Ratas , Nivel sin Efectos Adversos Observados , Contaminantes Ocupacionales del Aire/toxicidad , Contaminantes Ocupacionales del Aire/análisis , Nigeria , Metales/análisis , Gases/análisis , Gases/toxicidad , Hidroliasas/análisisRESUMEN
Agricultural organo-ferrihydrite (Fh) coprecipitates (OFCs), resulting from the coprecipitation of Fe(III) and dissolved organic carbon (DOC) from returned straws, significantly affect the bioavailability of heavy metals in farmland. However, the molecular sorption mechanisms of Cr(III) by the OFCs remain unclear. Here, we explored the sorption behaviors of Cr(III) by the OFCs formed with wheat or maize straws derived-DOC (wheat-DOC or maize-DOC) under various environmental conditions, and further underlying molecular sorption mechanisms using Cr K-edge X-ray absorption near edge structure (XANES) spectroscopy. Results showed that high C loadings reduced the specific surface areas (SSAs) and Cr(III) sorption capacities of the OFCs, implying the blockage of binding sites by C loading. Additionally, although the wheat-DOC induced OFC had a smaller SSA than the maize-DOC induced OFC, their Cr(III) sorption were comparable, which was likely to be compensated by the more carboxyl in the wheat-DOC. Moreover, at a higher ionic strength, the increased or slightly decreased Cr(III) sorption indicated that the inner-sphere sorption was dominant regardless of high or low C loadings, which was also supported by the extremely low Cr(III) extraction percentage. The Cr K-edge XANES spectroscopy suggested that Cr(III) could be immobilized by both the Fh and organic fractions, with the Fh fractions playing a significant role. These findings contribute to a molecular-level mechanistic understanding of Cr(III) sorption by the OFC, which will aid in the prevention and control of Cr-contaminated agricultural soils.
Asunto(s)
Cromo , Compuestos Férricos , Cromo/química , Compuestos Férricos/química , Suelo , Espectroscopía de Absorción de Rayos XRESUMEN
The coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOM) is a crucial process to control the mobility of HMs in the environment, but its underlying immobilization mechanisms are unclear. In this study, Cr(III) immobilization by coprecipitation with Fe(III) in the presence of straw-derived DOMs under different Fe/C molar ratios, pHs, and ionic strengths was investigated using scanning transmission X-ray microscopy (STXM) and ptychography and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed that Cr(III) retention was enhanced in the presence of DOM, a maximum of which was achieved at an Fe/C molar ratio of 0.5. The increase of pH and ionic strength could also promote Cr(III) immobilization. Cr K-edge XANES results indicated that Fe (oxy)hydroxide fractions, instead of organics, provided the predominant binding sites for Cr(III), which was directly confirmed by high spatial resolution STXM-ptychography analysis at the sub-micron- and nanoscales. Moreover, organics could indirectly facilitate Cr immobilization by improving the aggregation and deposition of coprecipitate particles through DOM bridging or electrostatic interactions. Additionally, C K-edge XANES analysis further indicated that the carboxylic groups of DOM were complexed with Fe (oxy)hydroxides, which probably contributed to DOM bridging. This study provides a new insight into Cr(III) immobilization mechanisms in its coprecipitation with Fe(III) and DOM, which could have important implications on the management of Cr(III)-enriched soils, particularly with crop straw returning.