Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 164: 111974, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38331648

RESUMEN

Full-body and lower-extremity human musculoskeletal models require feet ground reaction forces (GRFs) and centers of pressure (CoPs) as inputs to predict muscle forces and joint loads. GRFs/CoPs are traditionally measured via floor-mounted forceplates that are usually restricted to research laboratories thus limiting their applicability in real occupational and clinical setups. Alternatively, GRFs/CoPs can be estimated via inverse dynamic approaches as also implemented in the Anybody Modeling System (AnyBody Technology, Aalborg, Denmark). The accuracy of Anybody in estimating GRFs/CoPs during load-handling/reaching activities and the effect of its prediction errors on model-estimated spinal loads remain to be investigated. Twelve normal- and over-weight individuals performed total of 480 static load-handling/reaching activities while measuring (by forceplates) and predicting (by AnyBody) their GRFs/CoPs. Moreover, the effects of GRF/CoP prediction errors on the estimated spinal loads were evaluated by inputting measured or predicted GRFs/CoPs into subject-specific musculoskeletal models. Regardless of the subject groups (normal-weight or overweight) and tasks (load-reaching or load-handling), results indicated great agreements between the measured and predicted GRFs (normalized root-mean-squared error, nRMSEs < 14% and R2 > 0.90) and between their model-estimated spinal loads (nRMSEs < 14% and R2 > 0.83). These agreements were good but relatively less satisfactory for CoPs (nRMSEs < 17% and 0.57 < R2 < 0.68). The only exception, requiring a more throughout investigation, was the situation when the ground-foot contact was significantly reduced during the activity. It appears that occupational/clinical investigations performed in real workstation/clinical setups with no access to forceplates may benefit from the AnyBody GRF/CoP prediction tools for a wide range of load-reaching/handling activities.


Asunto(s)
Músculos , Columna Vertebral , Humanos , Fenómenos Biomecánicos , Columna Vertebral/fisiología , Extremidad Inferior , Pie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...