Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 653: 1343-1353, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30759574

RESUMEN

Alternate wetting and drying (AWD), has gained increasing attention as a promising strategy for mitigating greenhouse gas emissions (GHG) in flooded rice systems. AWD involves periodic drainage of rice paddies in order to inhibit methane (CH4) emissions. To date, studies evaluating this practice have been limited in their scope and resolution. Our study evaluates the mitigation potential of AWD from a life cycle perspective using high-resolution CH4 modeling to more accurately estimate the mitigation potential of this practice. We simulated California rice production under continuous flooding and under five AWD schedules ranging in the severity and frequency of dry-downs. Production models were coupled with the Peatland Ecosystem Photosynthesis Respiration and Methane Transport (PEPRMT) model to simulate CH4 fluxes at daily intervals. We then evaluated the GHG mitigation potential of AWD using life cycle assessment models. Frequent or severe dry-downs reduced simulated grain yields, which negated some of the benefits of AWD when assessed on a yield-scaled basis. We also found AWD-induced mitigation of CH4 emissions modeled with PEPRMT to be roughly half the magnitude reported from up-scaling of chamber measurements, highlighting the importance of high resolution field data to better characterize GHGs in rice systems. Reduced yields and conservative CH4 mitigation in our model lessened the overall mitigation potential of AWD. When the entire rice life cycle was considered, mitigation of overall global warming potential (GWP) was further reduced by the presence of additional GHG sources, which comprised roughly half of life cycle GWP. Our simulations resulted in ≤12% reductions in GWP kg-1 across all AWD scenarios and saw an increase in GWP when yields were severely reduced. Our results highlight the importance of constraining uncertainties in CH4 emissions and considering a life cycle perspective expressed on a yield-scaled basis in characterizing the mitigation potential of AWD.


Asunto(s)
Gases de Efecto Invernadero/análisis , Metano/análisis , Agricultura/métodos , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Calentamiento Global , Gases de Efecto Invernadero/química , Metano/química , Modelos Teóricos , Oryza
2.
Sci Total Environ ; 548-549: 60-71, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26799808

RESUMEN

Urbanization has increased heat in the urban environment, with many consequences for human health and well-being. Managing climate change in part through increasing vegetation is desired by many cities to mitigate current and future heat related issues. However, little information is available on what influences the current effectiveness and availability of vegetation for local cooling. In this study, we identified the variation in the interacting relationships among vegetation (normalized difference vegetation index), socioeconomic status (neighborhood income), elevation and land surface temperature (LST) to identify how vegetation based surface cooling services change throughout the pronounced coastal to desert climate gradient of the Los Angeles, CA metropolitan region, a megacity of >18 million residents. A key challenge for understanding variation in vegetation as a climate change adaptation tool spanning neighborhood to megacity scales is developing new "big data" analytical tools. We used structural equation modeling (SEM) to quantify the interacting relationships among socio-economic status data obtained from government census data, elevation and new LST and vegetation data obtained from an airborne imaging campaign conducted in 2013 for the urban and suburban areas across a series of fifteen climate zones. Vegetation systematically increased in cooling effectiveness from 6.06 to 31.77 degrees with increasing distance from the coast. Vegetation and neighborhood income were positively correlated throughout all climate zones with a peak in the relationship occurring near 25km from the coast. Because of the interaction between these two relationships, we also found that higher income neighborhoods were cooler and that this effect peaked at about 30km from the coast. These results show the availability and effectiveness of vegetation on the local climate varies tremendously throughout the Los Angeles, CA metropolitan area. Further, using the more inland climate zones as future analogs for more coastal zones, suggests that in the warmer climate conditions projected for the region the effectiveness of vegetation for regional cooling may increase thus acting as a localized negative feedback mechanism.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Clima Desértico , Monitoreo del Ambiente , Fenómenos Fisiológicos de las Plantas/fisiología , Ciudades , Calor , Los Angeles , Plantas , Urbanización
3.
Glob Chang Biol ; 20(7): 2198-210, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24777485

RESUMEN

The combined effects of vegetation and climate change on biosphere-atmosphere water vapor (H2 O) and carbon dioxide (CO2 ) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2 O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco ) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long-term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Ecosistema , Ciclo Hidrológico , Arizona , Bosques , Pradera , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...