Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Trends Genet ; 39(6): 433-435, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019751

RESUMEN

Genomic islands are hotspots for horizontal gene transfer (HGT) in bacteria, but, for Prochlorococcus, an abundant marine cyanobacterium, how these islands form has puzzled scientists. With the discovery of tycheposons, a new family of transposons, Hackl et al. provide evidence for elegant new mechanisms of gene rearrangement and transfer among Prochlorococcus and bacteria more broadly.


Asunto(s)
Bacteriófagos , Cianobacterias , Bacteriófagos/genética , Transferencia de Gen Horizontal/genética , Cianobacterias/genética , ARN de Transferencia/genética , Islas Genómicas
2.
Viruses ; 15(2)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36851794

RESUMEN

Cyanophages exert important top-down controls on their cyanobacteria hosts; however, concurrent analysis of both phage and host populations is needed to better assess phage-host interaction models. We analyzed picocyanobacteria Prochlorococcus and Synechococcus and T4-like cyanophage communities in Pacific Ocean surface waters using five years of monthly viral and cellular fraction metagenomes. Cyanophage communities contained thousands of mostly low-abundance (<2% relative abundance) species with varying temporal dynamics, categorized as seasonally recurring or non-seasonal and occurring persistently, occasionally, or sporadically (detected in ≥85%, 15-85%, or <15% of samples, respectively). Viromes contained mostly seasonal and persistent phages (~40% each), while cellular fraction metagenomes had mostly sporadic species (~50%), reflecting that these sample sets capture different steps of the infection cycle-virions from prior infections or within currently infected cells, respectively. Two groups of seasonal phages correlated to Synechococcus or Prochlorococcus were abundant in spring/summer or fall/winter, respectively. Cyanophages likely have a strong influence on the host community structure, as their communities explained up to 32% of host community variation. These results support how both seasonally recurrent and apparent stochastic processes, likely determined by host availability and different host-range strategies among phages, are critical to phage-host interactions and dynamics, consistent with both the Kill-the-Winner and the Bank models.


Asunto(s)
Bacteriófagos , Synechococcus , Bacteriófagos/genética , Especificidad del Huésped , Metagenoma , Océano Pacífico , Estaciones del Año
3.
Sci Total Environ ; 836: 155492, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35476949

RESUMEN

Ney Springs, a continental serpentinizing spring in northern California, has an exceptionally high reported pH (12.4) for a naturally occurring water source. With high conductivity fluids, it is geochemically more akin to marine serpentinizing systems than other terrestrial locations. Our geochemical analyses also revealed high sulfide concentrations (544 mg/L) and methane emissions (83% volume gas content) relative to other serpentinizing systems. Thermodynamic calculations were used to investigate the potential for substrates resulting from serpentinization to fuel microbial life, and were found to support the energetic feasibility of sulfate reduction, anaerobic methane oxidation, denitrification, and anaerobic sulfide oxidation within this system. Assessment of the microbial community via 16S rRNA taxonomic gene surveys and metagenome sequencing revealed a community composition dominated by poorly characterized members of the Izemoplasmatales and Clostridiales. The genomes of these dominant taxa point to a fermentative lifestyle, though other highly complete (>90%) metagenome assembled genomes support the potential for organisms to perform sulfate reduction, sulfur disproportionation and/or sulfur oxidation (aerobic and anaerobic). Two chemolithoheterotrophs identified in the metagenome, a Halomonas sp. and a Rhodobacteraceae sp., were isolated and shown to oxidize thiosulfate and were capable of growth in conditions up to pH 12.4. Despite being characteristic products of serpentinization reactions, little evidence was seen for hydrogen and methane utilization in the Ney Springs microbial community. Hydrogen is not highly abundant and could be consumed prior to reaching the spring community. Other metabolic strategies may be outcompeted by more energetically favorable heterotrophic or fermentation reactions, or even inhibited by other compounds in the spring such as ammonia. The unique geochemistry of Ney Springs provides an opportunity to study how local geology interacts with serpentinized fluids, while its microbial community can better inform us of the metabolic strategies employed in hyperalkaline environments.


Asunto(s)
Metano , Azufre , Hidrógeno , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Sulfatos , Sulfuros
4.
NAR Genom Bioinform ; 2(2): lqaa044, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32626849

RESUMEN

Metagenomic sequencing has greatly enhanced the discovery of viral genomic sequences; however, it remains challenging to identify the host(s) of these new viruses. We developed VirHostMatcher-Net, a flexible, network-based, Markov random field framework for predicting virus-prokaryote interactions using multiple, integrated features: CRISPR sequences and alignment-free similarity measures ([Formula: see text] and WIsH). Evaluation of this method on a benchmark set of 1462 known virus-prokaryote pairs yielded host prediction accuracy of 59% and 86% at the genus and phylum levels, representing 16-27% and 6-10% improvement, respectively, over previous single-feature prediction approaches. We applied our host prediction tool to crAssphage, a human gut phage, and two metagenomic virus datasets: marine viruses and viral contigs recovered from globally distributed, diverse habitats. Host predictions were frequently consistent with those of previous studies, but more importantly, this new tool made many more confident predictions than previous tools, up to nearly 3-fold more (n > 27 000), greatly expanding the diversity of known virus-host interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA