Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502189

RESUMEN

Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Lisosomas , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Doxorrubicina/uso terapéutico , Femenino , Humanos , Células MCF-7 , Mitocondrias/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1075-1084, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28214549

RESUMEN

BACKGROUND: We hypothesized that, among the mechanisms of drug-resistance acquired by doxorubicin (DOX)-resistant breast cancer cells to maintain cell survival, ATP-dependent drug efflux pumps could be expressed in their mitochondrial membranes and this might limit the accumulation of DOX in this subcellular compartment in relation to mitochondrial ATP production. METHODS/RESULTS: Mitochondrial DOX accumulation: the presence and the activity of mitochondrial efflux pumps and their relationship with mitochondrial ATP synthesis were analyzed in DOX-resistant (MCF-7doxR) and -sensitive (MCF-7S) breast cancer cells. Mitochondrial accumulation of DOX (autofluorescence) was decreased when ATP was produced, but only in MCF-7doxR. In these DOX-resistant cells, breast cancer resistance protein (BCRP) and multidrug resistance-associated protein (MRP1) were expressed and localized in mitochondria (confocal microscopy and confocal spectral imaging studies). In addition, mitochondrial accumulation of DOX was increased by BCRP and MRP1 inhibitors and, to a lower extent, by the mitochondrial ATP synthase inhibitor, oligomycin, in MCF-7doxR. CONCLUSIONS: Both BCRP and MRP1 were localized in mitochondria and participated to the reduction of mitochondrial accumulation of DOX in MCF-7doxR. This process was partly dependent of mitochondrial ATP synthesis. GENERAL SIGNIFICANCE: The present study provides novel insights in the involvement of mitochondria in the underlying mechanisms of DOX-resistance in breast cancer cells.


Asunto(s)
Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/fisiología , Mitocondrias/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Células MCF-7 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA