RESUMEN
Chlamydia trachomatis (Ct) is the most common bacterial sexually transmitted infection globally, and a vaccine is urgently needed to stop transmission and disease. Chlamydial Protease Activity Factor (CPAF) is an immunoprevalent and immunodominant antigen for CD4 T cells and B cells, which makes it a strong vaccine candidate. Due to the tolerogenic nature of the female genital tract (FGT) and its lack of secondary lymphoid tissue, effective induction of protective cell-mediated immunity will likely require potent and safe mucosal adjuvants. To address this need, we produced CPAF in a cell-free protein synthesis platform and adjuvanted it with the TLR9-agonist CpG1826, STING (stimulator of interferon genes) agonist cyclic-di-AMP (CDA), and/or the squalene oil-in-water nanoemulsion, AddaS03. We determined that intranasal immunization with CPAF plus CDA was well tolerated in female mice, induced CD4 T cells that produced IL-17A or IFNγ, significantly reduced bacterial shedding, and shortened the duration of infection in mice intravaginally challenged with Chlamydia muridarum . These data demonstrate the potential for CDA as a mucosal adjuvant for vaccines against Chlamydia genital tract infection.
RESUMEN
BACKGROUND: Chlamydia trachomatis (CT) is a globally prevalent sexually transmitted infection (STI) that can result in pelvic inflammatory disease, ectopic pregnancy and infertility in women. Currently, there is no prophylactic vaccine. METHODS: This study examined T cell immunity in a cohort of women recently infected with CT. Participants were screened against peptides spanning 33 of 894 possible CT proteins, either ex vivo or using short-term cell lines (STCL). CT-specific T cells were characterized by IFN-γ ELISpot and flow cytometry. RESULTS: Ex vivo CT-specific T cells were rarely detected; however, following in vitro expanded CT-specific T cells were detected by IFN-γ ELISpot in 90% (27/30) of participants. Notably, over 50% of participants had T cell responses targeting chlamydial protease-like activity factor (CPAF). T cell epitopes were dispersed across the CPAF protein. Flow cytometry analysis of STCL found CT-specific cells, were mainly CD4+, produced IFN-γ and TNF-α and were sustained over 12 months. Ex vivo analysis suggested CT-specific T cells mostly exhibited a central memory phenotype. CONCLUSION: Our results indicate that CT infection elicits low-frequency, persistent CD4 T cell responses in most women and that the secreted protein, CPAF, is an immunoprevalent CT antigen. Altogether, these data support development and testing of CT vaccines that enhance CD4 T cells against CPAF.
RESUMEN
Sexually transmitted infections (STIs) caused by bacterial pathogens Chlamydia trachomatis, Neisseria gonorrhoeae, and Treponema pallidum present significant public health challenges. These infections profoundly impact reproductive health, leading to pelvic inflammatory disease, infertility, and increased susceptibility to other infections. Prevention measures, including antibiotic treatments, are limited by the often-asymptomatic nature of these infections, the need for repetitive and continual screening of sexually active persons, antibiotic resistance for gonorrhea, and shortages of penicillin for syphilis. While vaccines exist for viral STIs like human papillomavirus (HPV) and hepatitis B virus (HBV), there are no vaccines available for bacterial STIs. This review examines the immune responses in the female genital tract to these bacterial pathogens and the implications for developing effective vaccines against bacterial STIs.
RESUMEN
A vaccine is needed to combat the Chlamydia epidemic. Replication-deficient viral vectors are safe and induce antigen-specific T-cell memory. We tested the ability of intramuscular immunization with modified vaccinia Ankara (MVA) virus or chimpanzee adenovirus (ChAd) expressing chlamydial outer membrane protein (OmcB) or the secreted protein, chlamydial protease-like activating factor (CPAF), to enhance T-cell immunity and protection in mice previously infected with plasmid-deficient Chlamydia muridarum CM972 and elicit protection in naïve mice. MVA.OmcB or MVA.CPAF increased antigen-specific T cells in CM972-immune mice â¼150 and 50-fold, respectively, but failed to improve bacterial clearance. ChAd.OmcB/MVA.OmcB prime-boost immunization of naïve mice elicited a cluster of differentiation (CD) 8-dominant T-cell response dominated by cluster of differentiation (CD)8 T cells that failed to protect. ChAd.CPAF/ChAd.CPAF prime-boost also induced a CD8-dominant response with a marginal reduction in burden. Challenge of ChAd.CPAF-immunized mice genetically deficient in CD4 or CD8 T cells showed that protection was entirely CD4-dependent. CD4-deficient mice had prolonged infection, whereas CD8-deficient mice had higher frequencies of CPAF-specific CD4 T cells, earlier clearance, and reduced burden than wild-type controls. These data reinforce the essential nature of the CD4 T-cell response in protection from chlamydial genital infection in mice and the need for vaccine platforms that drive CD4-dominant responses.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Linfocitos T CD8-positivos , Infecciones por Chlamydia , Chlamydia muridarum , Vectores Genéticos , Inmunización Secundaria , Animales , Chlamydia muridarum/inmunología , Ratones , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/prevención & control , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas/inmunología , Femenino , Virus Vaccinia/inmunología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Adenoviridae/genética , Humanos , Ratones Endogámicos C57BLRESUMEN
Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options-twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials.
RESUMEN
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Asunto(s)
Infecciones por Chlamydia , Humanos , Embarazo , Femenino , Virulencia/genética , Chlamydia trachomatis/genética , Conjuntiva , InflamaciónRESUMEN
Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted infection (STI) in the United States, despite effective antibiotics. Information regarding natural immunity to CT will inform vaccine design. The objectives of this study were to determine immune cell populations and functional features associated with reduced risk of CT reinfection or endometrial CT infection. PBMCs were collected from a cohort of CT-exposed women who were tested for CT and other STIs at the cervix and endometrium (to determine ascension) and were repeatedly tested over the course of a year (to determine reinfection). Mass cytometry identified major immune populations and T cell subsets. Women with CT had increased CD4+ effector memory T cells (TEM) compared to uninfected women. Specifically, Th2, Th17, and Th17 DN CD4+ TEM were increased. Th17 and Th17 DN CD4+ central memory T cells (TCM) were increased in women who did not experience follow-up CT infection, suggesting that these cells may be important for protection. These data indicate that peripheral T cells display distinct features that correlate with natural immunity to CT and suggest that the highly plastic Th17 lineage plays a role in protection against reinfection.
RESUMEN
We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia trachomatis (Ct) infection collected from 222 cis-gender females with high Ct exposure. We compared the predictive performance of 4 ML algorithms (naive Bayes, random forest, extreme gradient boosting with linear booster [xgbLinear], and k-nearest neighbors [KNN]), screened from 215 ML methods, in combination with two different feature selection strategies, Boruta and recursive feature elimination. Recursive feature elimination performed better than Boruta in this study. In prediction of Ct ascending infection, naive Bayes yielded a slightly higher median value of are under the receiver operating characteristic curve (AUROC) 0.57 (95% confidence interval [CI], 0.54 to 0.59) than other methods and provided biological interpretability. For prediction of incident infection among women uninfected at enrollment, KNN performed slightly better than other algorithms, with a median AUROC of 0.61 (95% CI, 0.49 to 0.70). In contrast, xgbLinear and random forest had higher predictive performances, with median AUROC of 0.63 (95% CI, 0.58 to 0.67) and 0.62 (95% CI, 0.58 to 0.64), respectively, for women infected at enrollment. Our findings suggest that clinical factors and serum anti-Ct protein IgGs are inadequate biomarkers for ascension or incident Ct infection. Nevertheless, our analysis highlights the utility of a pipeline that searches for biomarkers and evaluates prediction performance and interpretability. IMPORTANCE Biomarker discovery to aid early diagnosis and treatment using machine learning (ML) approaches is a rapidly developing area in host-microbe studies. However, lack of reproducibility and interpretability of ML-driven biomarker analysis hinders selection of robust biomarkers that can be applied in clinical practice. We thus developed a rigorous ML analytical framework and provide recommendations for enhancing reproducibility of biomarkers. We emphasize the importance of robustness in selection of ML methods, evaluation of performance, and interpretability of biomarkers. Our ML pipeline is reusable and open-source and can be used not only to identify host-pathogen interaction biomarkers but also in microbiome studies and ecological and environmental microbiology research.
Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Humanos , Femenino , Teorema de Bayes , Reproducibilidad de los Resultados , Biomarcadores , Inmunoglobulina G , Genitales , Aprendizaje AutomáticoRESUMEN
Electronic cigarette, or vaping, product use-associated lung injury (EVALI) is an increasingly recognized entity with the potential for severe pulmonary toxicity. We present the case of a young man first evaluated at a tertiary care center in the United States in 2019 with newly diagnosed testicular cancer with acute respiratory failure, which was initially attributed to possible metastatic disease but eventually determined to be related to EVALI. This case highlights the clinical features of EVALI, the potential diagnostic dilemma that can arise with EVALI when occurring in the setting of malignancy and the importance of inquiring about vaping use among patients with malignancy, especially in adolescents and young adults.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Vapeo , Masculino , Adolescente , Adulto Joven , Humanos , Estados Unidos , Lesión Pulmonar/diagnóstico , Lesión Pulmonar/etiología , Lesión Pulmonar/terapia , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/etiología , Vapeo/efectos adversos , Neoplasias de Células Germinales y Embrionarias/complicacionesRESUMEN
Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.
Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Animales , Femenino , Ratones , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidad , Plásmidos/genética , Virulencia/genéticaRESUMEN
Many biomedical studies collect data of mixed types of variables from multiple groups of subjects. Some of these studies aim to find the group-specific and the common variation among all these variables. Even though similar problems have been studied by some previous works, their methods mainly rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a latent mixed Gaussian copula (LMGC) model that can quantify the correlations among binary, ordinal, continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation into the group-specific and the common variation over multiple groups via solving a regularized M-estimation problem. We conduct extensive simulation studies to show the advantage of our proposed method over the Pearson correlation-based methods. We also demonstrate that by jointly solving the M-estimation problem over multiple groups, our method is better than decomposing the variation group by group. We also apply our method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate patients.
Asunto(s)
Variación Biológica Individual , Investigación Biomédica , Distribución Normal , Humanos , Chlamydia trachomatis , Infecciones por Chlamydia , Simulación por Computador , Infecciones del Sistema Genital , Investigación Biomédica/estadística & datos numéricosRESUMEN
Objectives: Identify genetic loci of enhanced susceptibility to Chlamydial trachomatis (Ct) upper genital tract infection in women. Methods: We performed an integrated analysis of DNA genotypes and blood-derived mRNA profiles from 200 Ct-exposed women to identify expression quantitative trait loci (eQTL) and determine their association with endometrial chlamydial infection using a mediation test. We further evaluated the effect of a lead eQTL on the expression of CD151 by immune cells from women with genotypes associated with low and high whole blood expression of CD151, respectively. Results: We identified cis-eQTLs modulating mRNA expression of 81 genes (eGenes) associated with altered risk of ascending infection. In women with endometrial infection, eGenes involved in proinflammatory signaling were upregulated. Downregulated eGenes included genes involved in T cell functions pivotal for chlamydial control. eGenes encoding molecules linked to metabolism of tryptophan, an essential chlamydial nutrient, and formation of epithelial tight junctions were also downregulated in women with endometrial infection. A lead eSNP rs10902226 was identified regulating CD151, a tetrospanin molecule important for immune cell adhesion and migration and T cell proliferation. Further in vitro experiments showed that women with a CC genotype at rs10902226 had reduced rates of endometrial infection with increased CD151 expression in whole blood and T cells when compared to women with a GG genotype. Conclusions: We discovered genetic variants associated with altered risk for Ct ascension. A lead eSNP for CD151 is a candidate genetic marker for enhanced CD4 T cell function and reduced susceptibility.
Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Infecciones por Chlamydia/genética , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Sitios de Carácter Cuantitativo , ARN Mensajero , Linfocitos T , TriptófanoRESUMEN
To prepare for the development of the 2021 Centers for Disease Control and Prevention (CDC) sexually transmitted infections treatment guidelines, the CDC convened a committee of expert consultants in June 2019 to discuss recent abstracts and published literature on the epidemiology, diagnosis, and management of sexually transmitted infections.This paper summarizes the key questions, evidence, and recommendations for the diagnosis and management of uncomplicated Chlamydia trachomatis (CT) infections in adolescents and adults that were reviewed and discussed for consideration in developing the guidelines. The evidence reviewed mostly focused on efficacy of doxycycline and azithromycin for urogenital, rectal, and oropharyngeal CT infection, CT risk factors in women, performance of CT nucleic acid amplification tests on self-collected meatal specimens in men, and performance of newer CT point-of-care tests.
Asunto(s)
Infecciones por Chlamydia , Enfermedades de Transmisión Sexual , Adolescente , Adulto , Azitromicina/uso terapéutico , Centers for Disease Control and Prevention, U.S. , Infecciones por Chlamydia/diagnóstico , Infecciones por Chlamydia/tratamiento farmacológico , Infecciones por Chlamydia/epidemiología , Chlamydia trachomatis , Femenino , Humanos , Masculino , Enfermedades de Transmisión Sexual/prevención & control , Estados Unidos/epidemiologíaRESUMEN
To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union test approach combined with the likelihood ratio test to detect mediation effect of multiple genetic variants via some mediator (e.g., the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed methods and substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis infection further showcase advantages of our methods. We believe our proposed methods will be of value and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype for new drug discovery and personalized medicine.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Algoritmos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , ProbabilidadRESUMEN
BACKGROUND: Previous research revealed antibodies targeting Chlamydia trachomatis elementary bodies was not associated with reduced endometrial or incident infection in C. trachomatis-exposed women. However, data on the role of C. trachomatis protein-specific antibodies in protection are limited. METHODS: A whole-proteome C. trachomatis array screening serum pools from C. trachomatis-exposed women identified 121 immunoprevalent proteins. Individual serum samples were probed using a focused array. Immunoglobulin (Ig) G antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon rank sum test. The impact of the breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA sequencing quantified C. trachomatis gene transcripts in cervical swab samples from infected women. RESULTS: IgG to pGP3 and CT_005 were associated with reduced endometrial infection; anti-CT_443, anti-CT_486, and anti-CT_123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. Messenger RNAs for immunoprevalent C. trachomatis proteins were highly abundant in the cervix. CONCLUSIONS: Protein-specific C. trachomatis antibodies are not sufficient to protect against ascending or incident infection. However, cervical C. trachomatis gene transcript abundance positively correlates with C. trachomatis protein immunogenicity. These abundant and broadly recognized antigens are viable vaccine candidates.
Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Anticuerpos Antibacterianos , Femenino , Humanos , Inmunoglobulina G , ReinfecciónRESUMEN
Chlamydia trachomatis (Ct) causes the most prevalent bacterial sexually transmitted disease leading to ectopic pregnancy and infertility. Swine not only have many similarities to humans, but they are also susceptible to Ct. Despite these benefits and the ease of access to primary tissue from this food animal, in vitro research in swine has been underutilized. This study will provide basic understanding of the Ct host-pathogen interactions in porcine oviduct epithelial cells (pOECs)-the counterparts of human Fallopian tube epithelial cells. Using NanoString technology, flow cytometry, and confocal and transmission-electron microscopy, we studied the Ct developmental cycle in pOECs, the cellular immune response, and the expression and location of the tight junction protein claudin-4. We show that Ct productively completes its developmental cycle in pOECs and induces an immune response to Ct similar to human cells: Ct mainly induced the upregulation of interferon regulated genes and T-cell attracting chemokines. Furthermore, Ct infection induced an accumulation of claudin-4 in the Ct inclusion with a coinciding reduction of membrane-bound claudin-4. Downstream effects of the reduced membrane-bound claudin-4 expression could potentially include a reduction in tight-junction expression, impaired epithelial barrier function as well as increased susceptibility to co-infections. Thereby, this study justifies the investigation of the effect of Ct on tight junctions and the mucosal epithelial barrier function. Taken together, this study demonstrates that primary pOECs represent an excellent in vitro model for research into Ct pathogenesis, cell biology and immunity.
RESUMEN
BACKGROUND: Chlamydia trachomatis (Ct) infection ascending to the upper genital tract can cause infertility. Direct association of genetic variants as contributors is challenging because infertility may not be diagnosed until years after infection. Investigating the intermediate trait of ascension bridges this gap. METHODS: We identified infertility genome-wide association study (GWAS) loci using deoxyribonucleic acid from Ct-seropositive cisgender women in a tubal factor infertility study and Ct-infected cisgender women from a longitudinal pelvic inflammatory disease cohort with known fertility status. Deoxyribonucleic acid and blood messenger ribonucleic acid from 2 additional female cohorts with active Ct infection and known endometrial infection status were used to investigate the impact of infertility single-nucleotide polymorphisms (SNPs) on Ct ascension. A statistical mediation test examined whether multiple infertility SNPs jointly influenced ascension risk by modulating expression of mediator genes. RESULTS: We identified 112 candidate infertility GWAS loci, and 31 associated with Ct ascension. The SNPs altered chlamydial ascension by modulating expression of 40 mediator genes. Mediator genes identified are involved in innate immune responses including type I interferon production, T-cell function, fibrosis, female reproductive tract health, and protein synthesis and degradation. CONCLUSIONS: We identified Ct-related infertility loci and their potential functional effects on Ct ascension.
Asunto(s)
Infecciones por Chlamydia/complicaciones , Chlamydia trachomatis/genética , Infertilidad Femenina/genética , Infertilidad Femenina/microbiología , Infertilidad/microbiología , Infecciones por Chlamydia/genética , ADN , Femenino , Estudio de Asociación del Genoma Completo , Interacciones Microbiota-Huesped , Humanos , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Pelvic inflammatory disease (PID) results from ascension of sexually transmitted pathogens from the lower genital tract to the uterus and/or fallopian tubes in women, with potential spread to neighboring pelvic organs. Patients may present acutely with lower abdominal or pelvic pain and pelvic organ tenderness. Many have subtle symptoms or are asymptomatic and present later with tubal factor infertility, ectopic pregnancy, or chronic pelvic pain. Neisseria gonorrhoeae and Chlamydia trachomatis are the 2 most commonly recognized PID pathogens. Their ability to survive within host epithelial cells and neutrophils highlights a need for T-cell-mediated production of interferon γ in protection. Data indicate that for both pathogens, antibody can accelerate clearance by enhancing opsonophagocytosis and bacterial killing when interferon γ is present. A study of women with N. gonorrhoeae- and/or C. trachomatis-induced PID with histologic endometritis revealed activation of myeloid cell, cell death, and innate inflammatory pathways in conjunction with dampening of T-cell activation pathways. These findings are supported by multiple studies in mouse models of monoinfection with N. gonorrhoeae or Chlamydia spp. Both pathogens exert multiple mechanisms of immune evasion that benefit themselves and each other at the expense of the host. However, similarities in host immune mechanisms that defend against these 2 bacterial pathogens instill optimism for the prospects of a combined vaccine for prevention of PID and infections in both women and men.
Asunto(s)
Infecciones por Chlamydia/complicaciones , Chlamydia trachomatis/aislamiento & purificación , Gonorrea/complicaciones , Neisseria gonorrhoeae/aislamiento & purificación , Enfermedad Inflamatoria Pélvica/microbiología , Femenino , Humanos , Evasión Inmune , Interferón gamma , Enfermedad Inflamatoria Pélvica/diagnóstico , Enfermedad Inflamatoria Pélvica/epidemiología , Dolor Pélvico/etiología , EmbarazoRESUMEN
Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.
Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Receptores Inmunológicos/inmunología , Receptor Activador Expresado en Células Mieloides 1/inmunología , Útero/inmunología , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Movimiento Celular/inmunología , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/inmunología , Modelos Animales de Enfermedad , Epitelio/inmunología , Epitelio/metabolismo , Epitelio/microbiología , Femenino , Genitales Femeninos/inmunología , Genitales Femeninos/metabolismo , Genitales Femeninos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Oviductos/inmunología , Oviductos/metabolismo , Oviductos/microbiología , Receptores Inmunológicos/metabolismo , Infecciones del Sistema Genital/inmunología , Infecciones del Sistema Genital/metabolismo , Infecciones del Sistema Genital/microbiología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Útero/metabolismo , Útero/microbiologíaRESUMEN
INTRODUCTION: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED: We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION: The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.