Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(28): eadg2955, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436982

RESUMEN

Nuclear localization signal (NLS) of HIV-1 integrase (IN) is implicated in nuclear import of HIV-1 preintegration complex (PIC). Here, we established a multiclass drug-resistant HIV-1 variant (HIVKGD) by consecutively exposing an HIV-1 variant to various antiretroviral agents including IN strand transfer inhibitors (INSTIs). HIVKGD was extremely susceptible to a previously reported HIV-1 protease inhibitor, GRL-142, with IC50 of 130 femtomolar. When cells were exposed to HIVKGD IN-containing recombinant HIV in the presence of GRL-142, significant decrease of unintegrated 2-LTR circular cDNA was observed, suggesting that nuclear import of PIC was severely compromised by GRL-142. X-ray crystallographic analyses revealed that GRL-142 interacts with NLS's putative sequence (DQAEHLK) and sterically blocks the nuclear transport of GRL-142-bound HIVKGD's PIC. Highly INSTI-resistant HIV-1 variants isolated from heavily INSTI-experienced patients proved to be susceptible to GRL-142, suggesting that NLS-targeting agents would serve as salvage therapy agents for highly INSTI-resistant variant-harboring individuals. The data should offer a new modality to block HIV-1 infectivity and replication and shed light on developing NLS inhibitors for AIDS therapy.


Asunto(s)
Integrasa de VIH , VIH-1 , Humanos , Señales de Localización Nuclear/genética , VIH-1/genética , Integrasa de VIH/genética , Antivirales
2.
RSC Adv ; 13(23): 15999-16011, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37265996

RESUMEN

Encouraged by our recent findings that 4'-cyano-deoxyguanosine (2), entecavir analogues 4 and 5 are highly potent anti-hepatitis B virus (HBV) agents, we designed and synthesized 6 having a hybridized structure of 4 and 5. The chiral quaternary carbon portion at the 4'-position, which is substituted by cyano- and 5'-hydroxymethyl groups, was stereospecifically constructed by radical-mediated 5-exo-dig mode cyclization of 10. The introduction of the fluorine atom into the 6''-position was achieved by radical-mediated stannylation of sulfide (E)-11 and subsequent electrophilic fluorination of (E)-12. The desired (E)-6 was obtained after the introduction of the guanine base into (E)-18 under Mitsunobu conditions and following global deprotection. The stereoisomer (Z)-6 was also prepared by the same procedure using (Z)-12. Compound (E)-6 showed highly potent anti-HBV activity (EC50 = 1.2 nM) with favorable cytotoxicity (CC50 = 93 µM).

3.
Nat Commun ; 14(1): 1076, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841831

RESUMEN

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Asunto(s)
Antivirales , COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Benzotiazoles , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores
4.
iScience ; 25(11): 105365, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36338434

RESUMEN

Potent and biostable inhibitors of the main protease (Mpro) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (2). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of Mpro and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound 3 is highly potent and blocks SARS-CoV-2 infection in vitro without a viral breakthrough. The derivatives, which contain a thioamide surrogate in the P2-P1 amide bond of these compounds (2 and 3), showed remarkably preferable pharmacokinetics in mice compared with the corresponding parent compounds. These data show that compounds 3 and its biostable derivative 4 are potential drugs for treating COVID-19 and that replacement of the digestible amide bond by its thioamide surrogate structure is an effective method.

5.
Nat Commun ; 12(1): 668, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510133

RESUMEN

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , SARS-CoV-2/efectos de los fármacos , Proteasas Virales/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , Indoles/farmacología , Piridinas/farmacología , Células Vero , Proteasas Virales/metabolismo
6.
J Hepatol ; 74(5): 1075-1086, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333207

RESUMEN

BACKGROUND & AIMS: While certain nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are efficacious in treating HBV infection, their effects are yet to be optimized and the emergence of NRTI-resistant HBV variants is an issue because of the requirement for lifelong treatment. The development of agents that more profoundly suppress wild-type and drug-resistant HBVs, and that have a long-acting effect, are crucial to improve patient outcomes. METHODS: Herein, we synthesized a novel long-acting 4'-modified NRTI termed E-CFCP. We tested its anti-HBV activity in vitro, before evaluating its anti-HBV activity in HBV-infected human-liver-chimeric mice (PXB-mice). E-CFCP's long-acting features and E-CFCP-triphosphate's interactions with the HBV reverse transcriptase (HBV-RT) were examined. RESULTS: E-CFCP potently blocked HBVWTD1 production (IC50qPCR_cell=1.8 nM) in HepG2.2.15 cells and HBVWTC2 (IC50SB_cell=0.7 nM), entecavir (ETV)-resistant HBVETV-RL180M/S202G/M204V (IC50SB_cell=77.5 nM), and adefovir-resistant HBVADV-RA181T/N236T production (IC50SB_cell=14.1 nM) in Huh7 cells. E-CFCP profoundly inhibited intracellular HBV DNA production to below the detection limit, but ETV and tenofovir alafenamide (TAF) failed to do so. E-CFCP also showed less toxicity than ETV and TAF. E-CFCP better penetrated hepatocytes and was better tri-phosphorylated; E-CFCP-triphosphate persisted intracellularly for longer than ETV-triphosphate. Once-daily peroral E-CFCP administration over 2 weeks (0.02~0.2 mg/kg/day) reduced HBVWTC2-viremia by 2-3 logs in PXB-mice without significant toxicities and the reduction persisted over 1-3 weeks following treatment cessation, suggesting once-weekly dosing capabilities. E-CFCP also reduced HBVETV-RL180M/S202G/M204V-viremia by 2 logs over 2 weeks, while ETV completely failed to reduce HBVETV-RL180M/S202G/M204V-viremia. E-CFCP's 4'-cyano and fluorine interact with both HBVWT-RT and HBVETV-RL180M/S202G-M204 -RT via Van der Waals and polar forces, being important for E-CFCP-triphosphate's interactions and anti-HBV potency. CONCLUSION: E-CFCP represents the first reported potential long-acting NRTI with potent activity against wild-type and treatment-resistant HBV. LAY SUMMARY: Although there are currently effective treatment options for HBV, treatment-resistant variants and the need for lifelong therapy pose a significant challenge. Therefore, the development of new treatment options is crucial to improve outcomes and quality of life. Herein, we report preclinical evidence showing that the anti-HBV agent, E-CFCP, has potent activity against wild-type and treatment-resistant variants. In addition, once-weekly oral dosing may be possible, which is preferrable to the current daily dosing regimens.


Asunto(s)
Desarrollo de Medicamentos/métodos , Farmacorresistencia Viral/efectos de los fármacos , Virus de la Hepatitis B , Hepatitis B , Inhibidores de la Transcriptasa Inversa/farmacología , Animales , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Esquema de Medicación , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/fisiología , Humanos , Ratones , ADN Polimerasa Dirigida por ARN/metabolismo , Tiempo
7.
mBio ; 11(4)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820005

RESUMEN

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Indoles/farmacología , Neumonía Viral/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Betacoronavirus/enzimología , COVID-19 , Chlorocebus aethiops , Cloroquina/farmacología , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Indoles/química , Indoles/uso terapéutico , Modelos Moleculares , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
8.
Sci Rep ; 10(1): 10664, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606378

RESUMEN

HIV-1 protease inhibitors (PIs), such as darunavir (DRV), are the key component of antiretroviral therapy. However, HIV-1 often acquires resistance to PIs. Here, seven novel PIs were synthesized, by introducing single atom changes such as an exchange of a sulfur to an oxygen, scission of a single bond in P2'-cyclopropylaminobenzothiazole (or -oxazole), and/or P1-benzene ring with fluorine scan of mono- or bis-fluorine atoms around DRV's scaffold. X-ray structural analyses of the PIs complexed with wild-type Protease (PRWT) and highly-multi-PI-resistance-associated PRDRVRP51 revealed that the PIs better adapt to structural plasticity in PR with resistance-associated amino acid substitutions by formation of optimal sulfur bond and adaptation of cyclopropyl ring in the S2'-subsite. Furthermore, these PIs displayed increased cell permeability and extreme anti-HIV-1 potency compared to DRV. Our work provides the basis for developing novel PIs with high potency against PI-resistant HIV-1 variants with a high genetic barrier.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Línea Celular , Darunavir/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Humanos , Replicación Viral/efectos de los fármacos
9.
Antiviral Res ; 176: 104744, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32084506

RESUMEN

We designed, synthesized and identified a novel nucleoside derivative, 4'-C-cyano-7-deaza-7-fluoro-2'-deoxyadenosine (CdFA), which exerts potent anti-HBV activity (IC50 ~26 nM) with favorable hepatocytotoxicity (CC50 ~56 µM). Southern blot analysis using wild-type HBV (HBVWT)-encoding-plasmid-transfected HepG2 cells revealed that CdFA efficiently suppresses the production of HBVWT (IC50 = 153.7 nM), entecavir (ETV)-resistant HBV carrying L180M/S202G/M204V substitutions (HBVETVR; IC50 = 373.2 nM), and adefovir dipivoxil (ADV)-resistant HBV carrying A181T/N236T substitutions (HBVADVR; IC50=192.6 nM), whereas ETV and ADV were less potent against HBVETVR and HBVADVR (IC50: >1,000 and 4,022.5 nM, respectively). Once-daily peroral administration of CdFA to human-liver-chimeric mice over 14 days (1 mg/kg/day) comparably blocked HBVWT and HBVETVR viremia by 0.7 and 1.2 logs, respectively, without significant changes in body-weight or serum human-albumin levels, although ETV only slightly suppressed HBVETVR viremia (CdFA vs ETV; p = 0.032). Molecular modeling suggested that ETV-TP has good nonpolar interactions with HBVWT reverse transcriptase (RTWT)'s Met204 and Asp205, while CdFA-TP fails to interact with Met204, in line with the relatively inferior activity against HBVWT of CdFA compared to ETV (IC50: 0.026 versus 0.003 nM). In contrast, the 4'-cyano of CdFA-TP forms good nonpolar contacts with RTWT's Leu180 and RTETVR's Met180, while ETV-TP loses interactions with RTETVR's Met180, explaining in part why ETV is less potent against HBVETVR than CdFA. The present results show that CdFA exerts potent activity against HBVWT, HBVETVR and HBVADVR with enhanced safety and that 7-deaza-7-fluoro modification confers potent activity against drug-resistant HBV variants and favorable safety, shedding light to further design more potent and safer anti-HBV nucleoside analogs.


Asunto(s)
Adenina/análogos & derivados , Antivirales/farmacología , Farmacorresistencia Viral , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , Nucleósidos/farmacología , Organofosfonatos/farmacología , Adenina/farmacología , Animales , Antivirales/síntesis química , Guanina/farmacología , Células Hep G2 , Virus de la Hepatitis B/clasificación , Hepatitis B Crónica/tratamiento farmacológico , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Nucleósidos/síntesis química , Carga Viral
10.
Artículo en Inglés | MEDLINE | ID: mdl-31514570

RESUMEN

Hepatitis B virus (HBV) infection is a major worldwide health problem that requires the development of improved antiviral therapies. Here, a series of 4'-Azido-thymidine/4'-Azido-2'-deoxy-5-methylcytidine derivatives (6, 10-15) were synthesized, and their anti-HBV activities evaluated. Compounds 10-15 were synthesized via an SNAr reaction of 18, in which the 4-position of the thymine moiety was activated as the 2,4,6-triisopropylbenzenesulfonate. Compounds 11-15 showed no antiviral activity. However, 4'-Azido thymidine (6) and 4'-Azido-2'-deoxy-5-methylcytidine (10) displayed significant anti-HBV activity (EC50 = 0.63 and 5.99 µM, respectively) with no detectable cytotoxicity against MT-2 cells up to 100 µM.


Asunto(s)
Antivirales/farmacología , Citidina/análogos & derivados , Zidovudina/análogos & derivados , Antivirales/síntesis química , Antivirales/química , Citidina/síntesis química , Citidina/química , Citidina/farmacología , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Estereoisomerismo , Zidovudina/síntesis química , Zidovudina/química , Zidovudina/farmacología
11.
Curr Top Med Chem ; 19(18): 1621-1649, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31424371

RESUMEN

The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult "dormant" HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.


Asunto(s)
Fármacos Anti-VIH/farmacología , Descubrimiento de Drogas , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Fármacos Anti-VIH/química , Farmacorresistencia Viral/efectos de los fármacos , Humanos
12.
Artículo en Inglés | MEDLINE | ID: mdl-31085520

RESUMEN

Combination antiretroviral therapy has achieved dramatic reductions in the mortality and morbidity in people with HIV-1 infection. Darunavir (DRV) represents a most efficacious and well-tolerated protease inhibitor (PI) with a high genetic barrier to the emergence of drug-resistant HIV-1. However, highly DRV-resistant variants have been reported in patients receiving long-term DRV-containing regimens. Here, we report three novel HIV-1 PIs (GRL-057-14, GRL-058-14, and GRL-059-14), all of which contain a P2-amino-substituted-bis-tetrahydrofuranylurethane (bis-THF) and a P2'-cyclopropyl-amino-benzothiazole (Cp-Abt). These PIs not only potently inhibit the replication of wild-type HIV-1 (50% effective concentration [EC50], 0.22 nM to 10.4 nM) but also inhibit multi-PI-resistant HIV-1 variants, including highly DRV-resistant HIVDRVRP51 (EC50, 1.6 nM to 30.7 nM). The emergence of HIV-1 variants resistant to the three compounds was much delayed in selection experiments compared to resistance to DRV, using a mixture of 11 highly multi-PI-resistant HIV-1 isolates as a starting HIV-1 population. GRL-057-14 showed the most potent anti-HIV-1 activity and greatest thermal stability with wild-type protease, and potently inhibited HIV-1 protease's proteolytic activity (Ki value, 0.10 nM) among the three PIs. Structural models indicate that the C-5-isopropylamino-bis-THF moiety of GRL-057-14 forms additional polar interactions with the active site of HIV-1 protease. Moreover, GRL-057-14's P1-bis-fluoro-methylbenzene forms strong hydrogen bonding and effective van der Waals interactions. The present data suggest that the combination of C-5-aminoalkyl-bis-THF, P1-bis-fluoro-methylbenzene, and P2'-Cp-Abt confers highly potent activity against wild-type and multi-PI-resistant HIV strains and warrant further development of the three PIs, in particular, that of GRL-057-14, as potential therapeutic for HIV-1 infection and AIDS.


Asunto(s)
Farmacorresistencia Viral Múltiple/efectos de los fármacos , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Bencimidazoles/química , Línea Celular , Evaluación Preclínica de Medicamentos , Farmacorresistencia Viral Múltiple/genética , Estabilidad de Enzimas , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/microbiología , Proteasa del VIH/metabolismo , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Uretano/química
13.
Sci Rep ; 9(1): 4828, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886166

RESUMEN

CCR5 is a member of the G-protein coupled receptor family that serves as an essential co-receptor for cellular entry of R5-tropic HIV-1, and is a validated target for therapeutics against HIV-1 infections. In the present study, we designed and synthesized a series of novel small CCR5 inhibitors and evaluated their antiviral activity. GRL-117C inhibited the replication of wild-type R5-HIV-1 with a sub-nanomolar IC50 value. These derivatives retained activity against vicriviroc-resistant HIV-1s, but did not show activity against maraviroc (MVC)-resistant HIV-1. Structural modeling indicated that the binding of compounds to CCR5 occurs in the hydrophobic cavity of CCR5 under the second extracellular loop, and amino acids critical for their binding were almost similar with those of MVC, which explains viral cross-resistance with MVC. On the other hand, one derivative, GRL-10018C, less potent against HIV-1, but more potent in inhibiting CC-chemokine binding, occupied the upper region of the binding cavity with its bis-THF moiety, presumably causing greater steric hindrance with CC-chemokines. Recent studies have shown additional unique features of certain CCR5 inhibitors such as immunomodulating properties and HIV-1 latency reversal properties, and thus, continuous efforts in developing new CCR5 inhibitors with unique binding profiles is necessary.


Asunto(s)
Fármacos Anti-VIH/farmacología , Antagonistas de los Receptores CCR5/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Receptores CCR5/metabolismo , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/uso terapéutico , Sitios de Unión/efectos de los fármacos , Capa Leucocitaria de la Sangre/citología , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/uso terapéutico , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células CHO , Línea Celular , Cricetulus , Farmacorresistencia Viral , Infecciones por VIH/virología , VIH-1/fisiología , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Concentración 50 Inhibidora , Maraviroc/farmacología , Maraviroc/uso terapéutico , Simulación del Acoplamiento Molecular , Cultivo Primario de Células , Receptores CCR5/ultraestructura , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
14.
Artículo en Inglés | MEDLINE | ID: mdl-30670420

RESUMEN

We designed, synthesized, and characterized a novel nucleoside analog, (1S,3S,5S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-5-hydroxy-1-(hydroxymethyl)-2-methylene-cyclopentanecarbonitrile, or 4'-cyano-methylenecarbocyclic-2'-deoxyguanosine (CMCdG), and evaluated its anti-hepatitis B virus (anti-HBV) activity, safety, and related features. CMCdG's in vitro activity was determined using quantitative PCR and Southern blotting assays, and its cytotoxicity was determined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, while its in vivo activity and safety were determined in human liver-chimeric mice infected with wild-type HBV genotype Ce (HBVWTCe) and an entecavir (ETV)-resistant HBV variant containing the amino acid substitutions L180M, S202G, and M204V (HBVETV-RL180M/S202G/M204V). CMCdG potently inhibited HBV production in HepG2.2.15 cells (50% inhibitory concentration [IC50], ∼30 nM) and HBVWTCe plasmid-transfected Huh7 cells (IC50, 206 nM) and efficiently suppressed ETV-resistant HBVETV-RL180M/S202G/M204V (IC50, 2,657 nM), while it showed no or little cytotoxicity (50% cytotoxic concentration, >500 µM in most hepatocytic cells examined). Two-week peroral administration of CMCdG (1 mg/kg of body weight/day once a day [q.d.]) to HBVWTCe-infected human liver-chimeric mice reduced the level of viremia by ∼2 logs. CMCdG also reduced the level of HBVETV-RL180M/S202G/M204V viremia by ∼1 log in HBVETV-RL180M/S202G/M204V-infected human liver-chimeric mice, while ETV (1 mg/kg/day q.d.) completely failed to reduce the viremia. None of the CMCdG-treated mice had significant drug-related changes in body weights or serum human albumin levels. Structural analyses using homology modeling, semiempirical quantum methods, and molecular dynamics revealed that although ETV triphosphate (TP) forms good van der Waals contacts with L180 and M204 of HBVWTCe reverse transcriptase (RT), its contacts with the M180 substitution are totally lost in the HBVETV-RL180M/S202G/M204V RT complex. However, CMCdG-TP retains good contacts with both the HBVWTCe RT and HBVETV-RL180M/S202G/M204V RT complexes. The present data warrant further studies toward the development of CMCdG as a potential therapeutic for patients infected with drug-resistant HBV and shed light on the further development of more potent and safer anti-HBV agents.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Nucleósidos/farmacología , Purinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Animales , Antivirales/efectos adversos , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Viral , Guanina/análogos & derivados , Guanina/farmacología , Células Hep G2 , Humanos , Ratones , Nucleósidos/efectos adversos , Purinas/efectos adversos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Albúmina Sérica/análisis
15.
Glob Health Med ; 1(1): 36-48, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33330753

RESUMEN

We designed, synthesized, and identified two novel nonpeptidic HIV-1 protease inhibitors (PIs), GRL- 037 and GRL-044, containing P2-tetrahydropyrano-tetrahydrofuran (Tp-THF), P1-benzene and P1-methoxybenzene, respectively, and P2'-isopropyl-aminobenzothiazole (Ip-Abt), based on the structure of the prototypic PI, darunavir (DRV). The 50% inhibitory concentrations (IC50s) of GRL-037 and GRL-044 against wild-type HIV-1NL4-3 were 0.042 and 0.0028-0.0033 nM with minimal cytotoxicity profiles compared to the IC50 values of four most potent FDA-approved PIs, ranging from 2.6 to 70 nM. GRL-044 was also potent against HIV-2EHO (IC50=0.0004 nM) and various PI-resistant HIV-1 variants (IC50 ranging from 0.065 to 19 nM). In the selection assays we conducted, the emergence of HIV-1 variants resistant to GRL-044 was significantly delayed compared to that against DRV. Thermal stability test using differential scanning fluorimetry employing purified HIV-1 protease (PR) and SYPRO® Orange showed that both GRL-037 and GRL-044 tightly bound to PR. A28S substitution emerged in the homologous recombination-based selection assays with GRL-044. Structural analyses showed that the larger size of GRL-044 over DRV, enabling GRL-044 to fit better to the hydrophobic cavity of protease, contributed to the greater potency of GRL- 044 against HIV-1. Structural analyses also suggested that the van der Waals surface contact of GRL-044 with A28' appears to be better compared to that of DRV because of the larger surface of Ip-Abt of GRL-044, which may be partially responsible for the emergence of A28S. The present antiviral data and structural features of GRL-044 should provide molecular insights for further design and development of potent and "resistance-repellant" novel PIs.

16.
Cell Chem Biol ; 25(10): 1268-1278.e3, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30174310

RESUMEN

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 strains resistant to existing NRTIs. Here, we report that EFdA and NRTIs with a 4'-ethynyl- or 4'-cyano-moiety exerted activity against HIV-1 with an M184V mutation and multiple NRTI-resistant HIV-1s, whereas NRTIs with other moieties (e.g., 4'-methyl) did not show this activity. Structural analysis indicated that EFdA and 4'-ethynyl-NRTIs (but not other 4'-modified NRTIs), formed strong van der Waals interactions with critical amino acid residues of reverse transcriptase. Such interactions were maintained even in the presence of a broad resistance-endowing M184V substitution, thus potently inhibiting drug-resistant HIV-1 strains. These findings also explain the mechanism for the potency of EFdA and provide insights for further design of anti-HIV-1 therapeutics.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Desoxiadenosinas/farmacología , Farmacorresistencia Viral , Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , Mutación Puntual , Inhibidores de la Transcriptasa Inversa/farmacología , Línea Celular , Desoxiadenosinas/química , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de la Transcriptasa Inversa/química
17.
mBio ; 9(2)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511083

RESUMEN

Darunavir (DRV) has bimodal activity against HIV-1 protease, enzymatic inhibition and protease dimerization inhibition, and has an extremely high genetic barrier against development of drug resistance. We previously generated a highly DRV-resistant HIV-1 variant (HIVDRVRP51). We also reported that four amino acid substitutions (V32I, L33F, I54M, and I84V) identified in the protease of HIVDRVRP51 are largely responsible for its high-level resistance to DRV. Here, we attempted to elucidate the role of each of the four amino acid substitutions in the development of DRV resistance. We found that V32I is a key substitution, which rarely occurs, but once it occurs, it predisposes HIV-1 to develop high-level DRV resistance. When two infectious recombinant HIV-1 clones carrying I54M and I84V (rHIVI54M and rHIVI84V, respectively) were selected in the presence of DRV, V32I emerged, and the virus rapidly developed high-level DRV resistance. rHIVV32I also developed high-level DRV resistance. However, wild-type HIVNL4-3 (rHIVWT) failed to acquire V32I and did not develop DRV resistance. Compared to rHIVWT, rHIVV32I was highly susceptible to DRV and had significantly reduced fitness, explaining why V32I did not emerge upon selection of rHIVWT with DRV. When the only substitution is at residue 32, structural analysis revealed much stronger van der Waals interactions between DRV and I-32 than between DRV and V-32. These results suggest that V32I is a critical amino acid substitution in multiple pathways toward HIV-1's DRV resistance development and elucidate, at least in part, a mechanism of DRV's high genetic barrier to development of drug resistance. The results also show that attention should be paid to the initiation or continuation of DRV-containing regimens in people with HIV-1 containing the V32I substitution.IMPORTANCE Darunavir (DRV) is the only protease inhibitor (PI) recommended as a first-line therapeutic and represents the most widely used PI for treating HIV-1-infected individuals. DRV possesses a high genetic barrier to development of HIV-1's drug resistance. However, the mechanism(s) of the DRV's high genetic barrier remains unclear. Here, we show that the preexistence of certain single amino acid substitutions such as V32I, I54M, A71V, and I84V in HIV-1 protease facilitates the development of high-level DRV resistance. Interestingly, all in vitro-selected highly DRV-resistant HIV-1 variants acquired V32I but never emerged in wild-type HIV (HIVWT), and V32I itself rendered HIV-1 more sensitive to DRV and reduced viral fitness compared to HIVWT, strongly suggesting that the emergence of V32I plays a critical role in the development of HIV-1's resistance to DRV. Our results would be of benefit in the treatment of HIV-1-infected patients receiving DRV-containing regimens.


Asunto(s)
Darunavir/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , VIH-1/efectos de los fármacos , Péptido Hidrolasas/genética , Inhibidores de Proteasas/uso terapéutico , Antivirales/uso terapéutico , Farmacorresistencia Viral/efectos de los fármacos , VIH-1/enzimología , VIH-1/patogenicidad , Péptido Hidrolasas/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-29463535

RESUMEN

We identified four novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs), GRL-078, -079, -077, and -058, containing an alkylamine at the C-5 position of P2 tetrahydropyrano-tetrahydrofuran (Tp-THF) and a P2' cyclopropyl (Cp) (or isopropyl)-aminobenzothiazole (Abt) moiety. Their 50% effective concentrations (EC50s) were 2.5 to 30 nM against wild-type HIV-1NL4-3, 0.3 to 6.7 nM against HIV-2EHO, and 0.9 to 90 nM against laboratory-selected PI-resistant HIV-1 and clinical HIV-1 variants resistant to multiple FDA-approved PIs (HIVMDR). GRL-078, -079, -077, and -058 also effectively blocked the replication of HIV-1 variants highly resistant to darunavir (DRV) (HIVDRVrp51), with EC50s of 38, 62, 61, and 90 nM, respectively, while four FDA-approved PIs examined (amprenavir, atazanavir, lopinavir [LPV], and DRV) had virtually no activity (EC50s of >1,000 nM) against HIVDRVrp51 Structurally, GRL-078, -079, and -058 form strong hydrogen bond interactions between Tp-THF modified at C-5 and Asp29/Asp30/Gly48 of wild-type protease, while the P2' Cp-Abt group forms strong hydrogen bonds with Asp30'. The Tp-THF and Cp-Abt moieties also have good nonpolar interactions with protease residues located in the flap region. For selection with LPV and DRV by use of a mixture of 11 HIVMDR strains (HIV11MIX), HIV11MIX became highly resistant to LPV and DRV over 13 to 32 and 32 to 41 weeks, respectively. However, for selection with GRL-079 and GRL-058, HIV11MIX failed to replicate at >0.08 µM and >0.2 µM, respectively. Thermal stability results supported the highly favorable anti-HIV-1 potency of GRL-079 as well as other PIs. The present data strongly suggest that the P2 Tp-THF group modified at C-5 and the P2' Abt group contribute to the potent anti-HIV-1 profiles of the four PIs against HIV-1NL4-3 and a wide spectrum of HIVMDR strains.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Secuencia de Aminoácidos/genética , Sulfato de Atazanavir/farmacología , Carbamatos/farmacología , Línea Celular Tumoral , Darunavir/farmacología , Farmacorresistencia Viral Múltiple/genética , Furanos , Proteasa del VIH/genética , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Lopinavir/farmacología , Pruebas de Sensibilidad Microbiana , Sulfonamidas/farmacología
19.
Elife ; 62017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039736

RESUMEN

Antiretroviral therapy for HIV-1 infection/AIDS has significantly extended the life expectancy of HIV-1-infected individuals and reduced HIV-1 transmission at very high rates. However, certain individuals who initially achieve viral suppression to undetectable levels may eventually suffer treatment failure mainly due to adverse effects and the emergence of drug-resistant HIV-1 variants. Here, we report GRL-142, a novel HIV-1 protease inhibitor containing an unprecedented 6-5-5-ring-fused crown-like tetrahydropyranofuran, which has extremely potent activity against all HIV-1 strains examined with IC50 values of attomolar-to-picomolar concentrations, virtually no effects on cellular growth, extremely high genetic barrier against the emergence of drug-resistant variants, and favorable intracellular and central nervous system penetration. GRL-142 forms optimum polar, van der Waals, and halogen bond interactions with HIV-1 protease and strongly blocks protease dimerization, demonstrating that combined multiple optimizing elements significantly enhance molecular and atomic interactions with a target protein and generate unprecedentedly potent and practically favorable agents.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Animales , Células Cultivadas , Sistema Nervioso Central/química , Farmacorresistencia Viral , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/aislamiento & purificación , Inhibidores de la Proteasa del VIH/farmacocinética , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Unión Proteica , Ratas
20.
J Med Chem ; 60(10): 4267-4278, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28418652

RESUMEN

Design, synthesis, and evaluation of a new class of exceptionally potent HIV-1 protease inhibitors are reported. Inhibitor 5 displayed superior antiviral activity and drug-resistance profiles. In fact, this inhibitor showed several orders of magnitude improved antiviral activity over the FDA approved drug darunavir. This inhibitor incorporates an unprecedented 6-5-5 ring-fused crown-like tetrahydropyranofuran as the P2 ligand and an aminobenzothiazole as the P2' ligand with the (R)-hydroxyethylsulfonamide isostere. The crown-like P2 ligand for this inhibitor has been synthesized efficiently in an optically active form using a chiral Diels-Alder catalyst providing a key intermediate in high enantiomeric purity. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insight into the binding properties of these new inhibitors.


Asunto(s)
Diseño de Fármacos , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Benzotiazoles/química , Benzotiazoles/farmacología , Cristalografía por Rayos X , Farmacorresistencia Viral Múltiple , Furanos/química , Furanos/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Proteasa del VIH/química , VIH-1/química , VIH-1/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Piranos/química , Piranos/farmacología , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...