Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400381, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801175

RESUMEN

A widely used method to obtain tetrazoles is through the azide and nitrile [3+2] cycloaddition. However, this process often involves using non-recyclable transition metals or Lewis acid catalysts and stoichiometric amounts of oxidants and additives, which reduces atom efficiency. We have discovered a convergent paired electrochemical reaction to perform this cycloaddition reaction, without the need for metal catalysts or oxidants. This tetrazolation strategy uses azidotrimethylsilane (TMSN3) and N-heterocycles in an undivided cell at a constant current. We use a mixture of CH3CN and equivalent amounts of H2O as co-solvent at room temperature. It is crucial to produce a stoichiometric amount of active hydroxyl ions through the cathodic reduction of water. Cyclic voltammetry (CV) studies and control experiments confirm that the cycloaddition reaction is specific to the electrode electron transfer process, eliminating the need for a mediator to shuttle electrons. This metal- and oxidant-free strategy is highly compatible with different functional groups and produces products with moderate to good yields. We have successfully tetrazolated bioactive compounds at a late stage, scaled up batches efficiently, and synthesized free amino-containing N-heterocycles via denitrogenation of tetrazoles.

2.
ACS Appl Bio Mater ; 7(4): 2423-2449, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478915

RESUMEN

In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(µ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(µ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a µ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear µ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare µ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Compuestos Organoplatinos , Cobre/farmacología , Cobre/química , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas
4.
Chemistry ; 30(16): e202304009, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38179806

RESUMEN

The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.

5.
Chemistry ; 30(6): e202303118, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37934155

RESUMEN

An electrooxidative C-H functionalization is a widely accepted route to obtain sulfur-containing arenes and heteroarenes. However, this process often involves using non-recyclable supporting electrolytes, (co)solvents like hexafluoroisopropanol, additives like acid, or catalysts. The use of additional reagents can increase costs and waste, reducing atom efficiency. Moreover, unlike other nitrogen-containing heterocycles, there have only been sporadic reports of electrochemical C-H functionalization in fused pyrimidin-4-ones, and an electrolyte-free process has yet to be developed. This work demonstrates that such anodic coupling reactions can be performed in an all-green electrolytic system without using such additional electrolytes or HFIP, maintaining a high atom economy. This C-H functionalization strategy utilizes inexpensive sodium sulfinates and ammonium thiocyanate as sulfonylating and thiocyanating agents in an undivided cell at a constant current, using a mixture of CH3 CN/H2 O as solvent at room temperature. Thus, fused pyrimidin-4-ones can be selectively converted into C3-sulfonylated and -thiocyanated derivatives in moderate to good yields.

6.
Chemistry ; 29(63): e202302335, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37555389

RESUMEN

The geometrical regioselective E→Z isomerization of a conjugated alkene under thermal activation pose a challenge due to microscopic reversibility. Herein we report that such reversibility issues can be circumvented by integrating E→Z isomerization with subsequent cyclization cascade, particularly in the absence of commonly employed light, acids, or metal-catalysts. Thus, linearly conjugated dienals in a mixture of toluene-alcohol (2 : 1) solvents or only with alcohol at 60-70 °C can be converted to γ-alkoxybutenolides in moderate to good yields. The intermediary 2Z,4E-isomer can be isolated, which includes the first example of isolating the regioselective isomerization product under thermal conditions. Density functional theory (DFT) studies have been employed to shed light on the feasibility of geometrical alkene isomerization and ensuing cascade sequences. It has been observed that the regioselective 2E,4E→2Z,4E isomerization of dienal is a thermodynamically facile (ΔG <0) process. Structural elucidation further reveals that the presence of a certain charge transfer and a non-covalent interaction may be the primary reasons for the enhanced stability of the 2Z,4E-isomer. The thermodynamic plausibility of the subsequent cascade reaction from the Z-isomer to the anticipated product in the presence of a polar protic solvent (here MeOH) is also explicated. Out of the two probable pathways, the "hemiacetal pathway" involving a relay proton transfer is kinetically more feasible due to the diminished activation barrier than the "conjugate addition pathway".

7.
ACS Appl Mater Interfaces ; 15(19): 22781-22804, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37129921

RESUMEN

A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(µ-Cl)]·2H2O (1), [Zn2(acdp)(µ-NO3)]·2H2O (2), and [Zn2(acdp)(µ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 µg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Zinc/farmacología , Zinc/química , Matriz Extracelular de Sustancias Poliméricas , Dióxido de Carbono , Especies Reactivas de Oxígeno/farmacología , Antibacterianos/química , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
Chemistry ; 29(31): e202300421, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892524

RESUMEN

The regioselective E→Z isomerization of a target olefin unit embedded in a conjugated polyene is challenging. Examples are limited to retinal and its derivatives only. The problem is further amplified when such an isomerization is integrated into cascade sequences, among which the regioselectivity and subsequent directionality are the major bottlenecks. Indeed, there are no reports till date for such a transformation. Herein, it is reported that such a controlled isomerization and subsequent cyclization cascade can be enabled by photosensitizer-free direct irradiation of linearly conjugated acyclic polyenes in dichloromethane solvent using a 390 nm LED. The directionality results from deconjugation of the extended π-system in the transient Z-isomer due to stabilizing n→π* interactions between 1,4-dicarbonyls (C=O→C=O) or 1,4-carbonyl/-aryl (C=O→aryl) groups. The involvement of such noncovalent interactions has been supported by X-ray crystallography and control experiments. Thus, conjugated trienones can be stereoselectively converted into oxabicyclo[3.2.1]octadienes in an atom- and step-economic manner, including the first example by regioselective isomerization of a tetrasubstituted alkene. The reaction conditions are very general (>46 examples). The reaction can be conducted under open air atmosphere at ambient temperature. Such a cascade cyclization can also be realized in solid state.

9.
Angew Chem Int Ed Engl ; 61(23): e202204141, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35334146

RESUMEN

The synthesis of reversible oligomer/polymers is fascinating both from the perspective of the fundamental understanding as well as their applications, ranging from biomedical to self-healing smart materials. On the other hand, the reactions that occur in single-crystal-to-single-crystal (SCSC) fashion offer great details of the structure, geometry and stereochemistry of the product. However, SCSC [2+2] oligomerization is rather difficult and rare. Further, till date there are no reports for a reversible [2+2] oligomerization in SCSC fashion. In this work, four halogen-substituted acrylic dienone molecules were deliberately designed and their ability to participate in [2+2] cycloaddition reaction in solid state was studied under visible light. Despite of having the required alignment of double bonds of dienes in all four crystal structures, they were found to exhibit variable reactivities given the differences in their weak intermolecular interactions such as halogen⋅⋅⋅halogen, halogen⋅⋅⋅π and C-H⋅⋅⋅O interactions. Notably, one of these materials exhibits reversible oligomerization in a SCSC manner.

11.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053330

RESUMEN

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores Virales/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia/métodos , Células Jurkat , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL
12.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053331

RESUMEN

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Transcriptoma/inmunología , Microambiente Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
13.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839608

RESUMEN

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Malaria/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Exocitosis , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/metabolismo
14.
Front Physiol ; 11: 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116804

RESUMEN

BACKGROUND: Near-infrared spectroscopy (NIRS) has been used to measure muscle mitochondrial capacity (mVO2max) as the recovery rate constant of muscle metabolism after exercise. The current method requires as many as 50 short ischemic occlusions to generate two recovery rate constants. PURPOSE: To determine the validity and repeatability of using a 6-occlusion protocol versus one with 22 occlusions to measure muscle mitochondrial capacity. The order effect of performing multiple Mito6 test was also evaluated. METHOD: In two independent data sets (bicep n = 7, forearm A n = 23), recovery curves were analyzed independently using both the 6 and 22 occlusion methods. A third data set (forearm B n = 16) was generated on the forearm muscles of healthy subjects using four 6-occlusion tests performed in succession. Recovery rate constants were generated using a MATLAB routine. RESULTS: When calculated from the same data set, the recovery rate constants were not significantly different between the 22 occlusion and 6 occlusion methods for the bicep (1.43 ± 0.33 min-1, 1.43 ± 0.35 min-1, p = 0.81) and the forearm A (1.97 ± 0.40 min-1, 1.97 ± 0.43 min-1, p = 0.90). Equivalence testing showed that the mean difference was not different than zero and the 90% confidence intervals were within 5% of the average rate constant. This was true for the Mito6 and the Mito5∗ approaches. Bland-Altman analysis showed a slope of 0.21 min-1 and an r of 0.045 for the bicep dataset and a slope of -0.01 min-1 and an r of 0.045 for the forearm A dataset. When performing the four 6-occlusion tests; recovery rate constants showed no order effects (1.50 ± 0.51 min-1, 1.42 ± 0.54 min-1, 1.26 ± 0.41 min-1, 1.29 ± 0.47 min-1, P > 0.05). CONCLUSION: The Mito6 analysis is a valid and repeatable approach to measure mitochondrial capacity. The Mito6 protocol used fewer ischemic occlusion periods and multiple tests could be performed in succession in less time, increasing the practicality of the NIRS mitochondrial capacity test. There were no order effects for the rate constants of four repeated 6-occlusion tests of mitochondrial capacity, supporting the use of multiple tests to improve accuracy.

15.
Cancer Discov ; 10(1): 124-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826876

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that require MHC class I-related protein 1 (MR1) for their development. The role of MAIT cells in cancer is unclear, and to date no study has evaluated these cells in vivo in this context. Here, we demonstrated that tumor initiation, growth, and experimental lung metastasis were significantly reduced in Mr1 -/- mice, compared with wild-type mice. The antitumor activity observed in Mr1 -/- mice required natural killer (NK) and/or CD8+ T cells and IFNγ. Adoptive transfer of MAIT cells into Mr1 -/- mice reversed metastasis reduction. Similarly, MR1-blocking antibodies decreased lung metastases and suppressed tumor growth. Following MR1 ligand exposure, some, but not all, mouse and human tumor cell lines upregulated MR1. Pretreatment of tumor cells with the stimulatory ligand 5-OP-RU or inhibitory ligand Ac-6-FP increased or decreased lung metastases, respectively. MR1-deleted tumors resulted in fewer metastases compared with parental tumor cells. MAIT cell suppression of NK-cell effector function was tumor-MR1-dependent and partially required IL17A. Our studies indicate that MAIT cells display tumor-promoting function by suppressing T and/or NK cells and that blocking MR1 may represent a new therapeutic strategy for cancer immunotherapy. SIGNIFICANCE: Contradicting the perception that MAIT cells kill tumor cells, here MAIT cells promoted tumor initiation, growth, and metastasis. MR1-expressing tumor cells activated MAIT cells to reduce NK-cell effector function, partly in a host IL17A-dependent manner. MR1-blocking antibodies reduced tumor metastases and growth, and may represent a new class of cancer therapeutics.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/patología , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/patología , Animales , Apoptosis , Proliferación Celular , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Células Tumorales Cultivadas
16.
Org Lett ; 21(6): 1578-1582, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30816718

RESUMEN

2,4-Dienones undergo visible-light-promoted, photocatalyst-free dimerization in neat conditions to provide cyclohexene derivatives stereoselectively through cascade rearrangement pathways, whereas regioselective E → Z isomerization of the more dienophilic double bond takes place exclusively in nitromethane. On the basis of intermediate isolation and computational DFT studies, the dimerization reaction is proposed to proceed via s-trans to s-cis isomerization/regioselective E → Z isomerization/Diels-Alder cycloaddition.

17.
Cell ; 174(5): 1216-1228.e19, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30057111

RESUMEN

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Guanidinas/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Animales , Peso Corporal , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Femenino , Guanidinas/química , Células HeLa , Humanos , Enfermedad de Huntington/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína Fosfatasa 1/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Proteostasis , Proteínas Recombinantes/farmacología , Resonancia por Plasmón de Superficie
18.
J Clin Invest ; 128(6): 2613-2625, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29757192

RESUMEN

Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice. Cd155-/- mice displayed reduced tumor growth and metastasis via DNAM-1 upregulation and enhanced effector function of CD8+ T and NK cells, respectively. CD155-deleted tumor cells also displayed slower tumor growth and reduced metastases, demonstrating the importance of a tumor-intrinsic role of CD155. CD155 absence on host and tumor cells exerted an even greater inhibition of tumor growth and metastasis. Blockade of PD-1 or both PD-1 and CTLA4 was more effective in settings in which CD155 was limiting, suggesting the clinical potential of cotargeting PD-L1 and CD155 function.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/deficiencia , Neoplasias Experimentales/inmunología , Receptores Virales/deficiencia , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/patología , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Células Asesinas Naturales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Receptores Virales/inmunología
19.
J Org Chem ; 83(4): 2114-2124, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29393648

RESUMEN

Cu(II)-catalyzed reaction of α-keto thioesters with trimethylsilyl azide (TMSN3) proceeds with the transformation of the thioester group into urea through C-C and C-S bond cleavages, constituting a practical and straightforward synthesis of N-acylureas. When diphenyl phosphoryl azide (DPPA) is used instead as the azide source in an aqueous environment, primary amides are formed via substitution of the thioester group. The reactions are proposed to proceed through Curtius rearrangement of the initially formed α-keto acyl azide to generate an acyl isocyanate intermediate, which reacts further with an additional amount of azide or water and rearranges to afford the corresponding products. To demonstrate the potentiality of the method, one-step syntheses of pivaloylurea and isovaleroylurea, displaying anticonvulsant activities, have been carried out.

20.
Immunity ; 47(4): 789-802.e9, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045907

RESUMEN

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Experimentales/terapia , Neutrófilos/inmunología , Proteínas Proto-Oncogénicas c-met/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Estimación de Kaplan-Meier , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...