Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biotechnol ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740306

RESUMEN

The TFE3 fusion gene, byproduct of Xp11.2 translocation, is the diagnostic marker for translocation renal cell carcinoma (tRCC). Absence of any clinically recognized therapy for tRCC, pressing a need to create novel and efficient therapeutic approaches. Previous studies shown that stabilization of the G-quadruplex structure in oncogenes suppresses their expression machinery. To combat the oncogenesis caused by fusion genes, our objective is to locate and stabilize the G-quadruplex structure within the PRCC-TFE3 fusion gene. Using the Quadruplex-forming G Rich Sequences (QGRS) mapper and the Non-B DNA motif search tool (nBMST) online server, we found putative G-quadruplex forming sequences (PQS) in the PRCC-TFE3 fusion gene. Circular dichroism demonstrating a parallel G-quadruplex in the targeted sequence. Fluorescence and UV-vis spectroscopy results suggest that pyridostatin binds to this newly discovered G-quadruplex. The PCR stop assay, as well as transcriptional or translational inhibition using real time PCR and Dual luciferase assay, revealed that stable G-quadruplex formation affects biological processes. Confocal microscopy of HEK293T cells transfected with the fusion transcript confirmed G-quadruplexes formation in cell. This investigation may shed light on G-quadruplex's functions in fusion genes and may help in the development of therapies specifically targeted against fusion oncogenes, which would enhance the capability of current tRCC therapy approach.

2.
Urol Oncol ; 42(7): 179-190, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594151

RESUMEN

Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , MicroARNs/orina , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38450645

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is an old onset devastating neurodegenerative disorder. Young-onset ALS cases especially sporadic ones who are between 25 and 45 years are rarely affected by the disease. Despite the identification of numerous candidate genes associated with ALS, the etiology of the disease remains elusive due to extreme genetic and phenotypic variability. The advent of affordable whole exome sequencing (WES) has opened new avenues for unraveling the disease's pathophysiology better. Methods and results: We aimed to determine the genetic basis of an Indian-origin, young onset sporadic ALS patient with very rapid deterioration of the disease course without any cognitive decline who was screened for mutations in major ALS candidate genes by WES. Variants detected were reconfirmed by Sanger sequencing. The clinicopathological features were investigated and two heterozygous missense variants were identified: R452W, not previously associated with ALS, present in one of the four conserved C terminal domains in ANXA11 and R208W in SIGMAR1, respectively. Both of these variants were predicted to be damaging by pathogenicity prediction tools and various in silico methods. Conclusion: Our study revealed two potentially pathogenic variants in two ALS candidate genes. The genetic makeup of ALS patients from India has been the subject of a few prior studies, but none of them examined ANXA11 and SIGMAR1 genes so far. These results establish the framework for additional research into the pathogenic processes behind these variations that result in sporadic ALS disease and further our understanding of the genetic makeup of Indian ALS patients.

4.
MedComm (2020) ; 5(4): e469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525108

RESUMEN

Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.

5.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103757

RESUMEN

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Asunto(s)
Apoptosis , Calcimicina , Calcio , Receptores Purinérgicos P2X4 , Células MCF-7 , Línea Celular Tumoral , Humanos , Calcimicina/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Espacio Intracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
PLoS One ; 18(10): e0292180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788254

RESUMEN

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Cuidados Paliativos
7.
Chemosphere ; 339: 139638, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37524264

RESUMEN

In this study, water dispersible fluorescent carbon quantum dot (CQD) has been synthesised, having an average size of 8.6 ± 0.4 nm using Cynodon dactylon (CD) following microwave assisted green synthetic one-step method. As-prepared CQD fluoresces strongly at 444 nm having a quantum yield of 1% in water when excited at 350 nm. This fluorescence of CQD is sensitive toward As3+ and Fe3+ metal ions. These CQD are utilized for dual metal ion fluorescence sensing; turn-on fluorescence sensing for As3+ and turn-off fluorescence sensing for Fe3+ ions. Limit of detection for As3+ and Fe3+ ions has been found to be 19 nM and 0.10 µM respectively, which is the lowest value reported for As3+ without any functionalization. The adsorption kinetics of As3+ and Fe3+ ions on CQD have been examined using pseudo-first-order-kinetic model revealing that physical adsorption is dominant over chemical processes in this work. For 0.41 g/L and 1.90 g/L dose of CQD, the equilibrium adsorption capacity was found to be 1.57 × 10-6 mg/g, 2.91 × 10-7 mg/g, and 1.01 × 10-5 mg/g, 1.69 × 10-6 mg/g respectively for As3+ and Fe3+ ions. Despite having low quantum yield in water, as-prepared CQD showed low cytotoxicity and good tolerance against photodegradation of biological cells at concentrations lower than 62.5 µg/mL and when the cells are illuminated up to 12 h. Owing to this, the synthesised CQD have been utilized as fluorescent probes for in itro cell imaging.


Asunto(s)
Puntos Cuánticos , Carbono , Cynodon , Metales , Colorantes Fluorescentes , Iones , Agua
8.
Indian J Nephrol ; 33(3): 195-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448904

RESUMEN

Background: With the variable genotype-phenotype expression of autosomal dominant polycystic kidney disease (ADPKD) and availability of novel targeted therapies, it is important to find predictors for rapid progression. The PROPKD score, consisting of genetic and clinical parameters like sex, hypertension, and urological events, is a useful tool in predicting the risk of progression. This study was aimed to determine the risk of ADPKD progression in Indian patients using the PROPKD score. Materials and Methods: A retrospective study was done from 2006 to 2021. ADPKD patients with ESRD were included in the study. Scoring was done as per the PROPKD score as follows: male sex: 1, onset of hypertension before 35 years: 2, first urological event before 35 years: 2, PKD1 truncating mutation: 4, PKD1 non-truncating mutation: 2, and PKD2 mutation: 0. Two types of risk classifications were done as follows: (a) considering the clinical variables in all 73 patients (male sex, onset of hypertension before 35 years, and first urological event before 35 years), they were classified into three risk groups: low-risk group (0-1), intermediate-risk group (2-3), and high-risk group (4-5) and (b) considering the clinical variables and type of mutation in 39 patients, they were classified into three risk groups: low-risk group (0-3), intermediate-risk group (4-6), and high-risk group (7-9). Results: Total number of patients included was 73, with the median age at ESRD being 54 years. High-risk group of clinical variables with hazard ratio (HR) of 4.570 (2.302-9.075, P < 0.001) and high-risk group of the PROPKD score with HR of 6.594 (1.868-23.284, P = 0.003) were associated with early ESRD. High-risk groups of both classifications were associated with early ESRD. Conclusion: High-risk groups based on the PROPKD scoring and clinical variables were associated with early progression to ESRD.

9.
Front Genet ; 14: 1065757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741322

RESUMEN

Prostate cancer is the second most common male cancer worldwide showing the highest rates of incidence in Western Europe. Although the measurement of serum prostate-specific antigen levels is the current gold standard in PCa diagnosis, PSA-based screening is not considered a reliable diagnosis and prognosis tool due to its lower sensitivity and poor predictive score which lead to a 22%-43% overdiagnosis, unnecessary biopsies, and over-treatment. These major limitations along with the heterogeneous nature of the disease have made PCa a very unappreciative subject for diagnostics, resulting in poor patient management; thus, it urges to identify and validate new reliable PCa biomarkers that can provide accurate information in regard to disease diagnosis and prognosis. Researchers have explored the analysis of microRNAs (miRNAs), messenger RNAs (mRNAs), small proteins, genomic rearrangements, and gene expression in body fluids and non-solid tissues in search of lesser invasive yet efficient PCa biomarkers. Although the presence of miRNAs in body fluids like blood, urine, and saliva initially sparked great interest among the scientific community; their potential use as liquid biopsy biomarkers in PCa is still at a very nascent stage with respect to other well-established diagnostics and prognosis tools. Up to date, numerous studies have been conducted in search of PCa miRNA-based biomarkers in whole blood or blood serum; however, only a few studies have investigated their presence in urine samples of which less than two tens involve the detection of miRNAs in extracellular vesicles isolated from urine. In addition, there exists some discrepancy around the identification of miRNAs in PCa urine samples due to the diversity of the urine fractions that can be targeted for analysis such as urine circulating cells, cell-free fractions, and exosomes. In this review, we aim to discuss research output from the most recent studies involving the analysis of urinary EVs for the identification of miRNA-based PCa-specific biomarkers.

10.
Int J Biol Macromol ; 233: 123375, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702222

RESUMEN

Mutations in the PAX9 are responsible for non-syndromic tooth agenesis in humans, although their structural and functional consequences on protein phenotype, stability, and posttranslational modifications (PTMs) have not yet been adequately investigated. This in silico study focuses on retrieving the six most deleterious mutations (L21P, R26W, R28P, G51S, I87F, and K91E) of PAX9 that has been linked to severe oligodontia. Several computational algorithm methods were used to determine the deleterious effects of PAX9 mutations. Analysis of gene ontology, protein interactions, and PTMs indicated significant functional changes caused by PAX9 mutations. The structural superimposition of the wild-type and mutant PAX9 variants revealed structural changes in locations that were present in the structures of all six variations. The conserved domain analysis revealed that the areas shared by all six variations contained unique sections that lacked DNA binding or protein-protein interaction sites, suggesting prospective drug target sites for functional restoration. The protein-protein interaction network showed KDM5B as PAX9's strongest interacting partner similar to MSX1. The PAX9 protein's structural conformations, compactness, stiffness, and function may all be impacted by changes, according to MD simulations. In addition, research on cell lines and animal models may be valuable in establishing their specific roles in functional annotations.


Asunto(s)
Anodoncia , Factor de Transcripción PAX9 , Animales , Humanos , Anodoncia/genética , Mutación , Mutación Missense , Factor de Transcripción PAX9/química , Factor de Transcripción PAX9/genética , Mapas de Interacción de Proteínas
11.
Mol Genet Genomics ; 298(1): 183-199, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36374296

RESUMEN

Congenital tooth agenesis (CTA) is one of the most common craniofacial anomalies. Its frequency varies among different population depending upon the genetic heterogeneity. CTA could be of familial or sporadic and syndromic or non-syndromic. Five major genes are found to be associated with non-syndromic CTA, namely PAX9, MSX1, EDA1, AXIN2, and WNT10A. Very few studies have been carried out so far on CTA on this Indian population making this study unique and important. This study was initiated to identify potential pathogenic variant associated with congenital tooth agenesis in an India family with molar tooth agenesis. CTA was investigated and a novel c.336C > G variation was identified in the exon 3 of PAX9, leading to substitution of evolutionary conserved Cys with Trp at 112th amino acid position located at the functionally significant DNA-binding paired domain region. Functional analysis revealed that p.Cys112Trp mutation did not prevent the nuclear localization although mutant protein had higher cytoplasmic retention. EMSA using e5 probe revealed that mutant protein was unable to bind with the paired-domain-binding site. Subsequently, GST pull-down assay revealed lower binding activity of the mutant protein with its known interactor MSX1. These in vitro results were consistent with the computational results. The in vitro and computational observations altogether suggest that c.336C > G (p.Cys112Trp) variation leads to loss of function of PAX9 leading to CTA in this family.


Asunto(s)
Anodoncia , Humanos , Anodoncia/genética , Mutación , Exones , Sitios de Unión , India , Factor de Transcripción PAX9/genética , Factor de Transcripción PAX9/química
12.
Microb Pathog ; 169: 105619, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35690234

RESUMEN

The newly discovered COVID variant B.1.1.529 in Botswana has more than 30 mutations in spike and many other in non-spike proteins, far more than any other SARS-CoV-2 variant accepted as a variant of concern by the WHO and officially named Omicron, and has sparked concern among scientists and the general public. Our findings provide insights into structural modification caused by the mutations in the Omicrons receptor-binding domain and look into the effects on interaction with the hosts neutralizing antibodies CR3022, B38, CB6, P2B-2F6, and REGN, as well as ACE2R using an in silico approach. Computational analysis revealed that the Omicron variant has a higher binding affinity for the human ACE2 receptor than the wild and Delta (AY.1 and AY.2 strains), but lower than the Delta AY.3 strain. MD simulation and docking analysis suggest that the omicron and Delta AY.3 were found to have relatively unstable RBD structures and hampered interactions with antibodies more than wild and Delta (AY.1 and AY.2), which may lead to relatively more pathogenicity and antibody escape. In addition, we observed lower binding affinity of Omicron for human monoclonal antibodies (CR3022, B38, CB6, and P2B2F6) when compared to wild and Delta (AY.1 & AY.2). However, the binding affinity of Omicron RBD variants for CR3022, B38, and P2B2F6 antibodies is lower as compared to Delta AY.3, which might promote immune evasion and reinfection and needs further experimental investigation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Eficacia de las Vacunas , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Humanos , Glicoproteínas de Membrana/genética , Estructura Terciaria de Proteína , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/genética
13.
Indian J Med Microbiol ; 40(3): 413-419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370005

RESUMEN

PURPOSE: The existing panels of COVID-19 vaccines are based on the spike protein of an earlier SARS-CoV-2 strain that emerged in Wuhan, China. However, the evolving nature of SARS-CoV-2 has resulted in the emergence of new variants, thereby posing a greater challenge in the management of the disease. India faced a deadlier second wave of infections very recently, and genomic surveillance revealed that the B.1.617 variant and its sublineages are responsible for the majority of the cases. Hence, it's crucial to determine if the current vaccines available can be effective against these variants. METHODS: To address this, we performed molecular dynamics (MD) simulation on B.1.617 along with K417G variants and other RBD variants. We studied structural alteration of the spike protein and factors affecting antibody neutralization and immune escape via In silico docking. RESULTS: We found that in seven of the 12 variants studied, there was a structural alteration in the RBD region, further affecting its stability and function. Docking analysis of RBD variants and wild-type strains revealed that these variants have a higher affinity for the ACE2 (angiotensin 2 altered enzymes) receptor. Molecular interaction with CR3022 antibody revealed that binding affinity was less in comparison to wild type, with B.1.617 showing the least binding affinity. CONCLUSIONS: The results of the extensive simulations provide novel mechanistic insights into the conformational dynamics and improve our understanding of the enhanced properties of these variants in terms of infectivity, transmissibility, neutralization potential, virulence, and host-viral replication fitness.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Eficacia de las Vacunas , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Simulación de Dinámica Molecular , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
14.
J Cell Biochem ; 123(2): 431-449, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34817077

RESUMEN

X-linked hypohidrotic dysplasia (XLHED), caused by mutations in the EDA gene, is a rare genetic disease that affects the development and function of the teeth, hair, nails, and sweat glands. The structural and functional consequences of caused by an ectodysplasin-A (EDA) mutations on protein phenotype, stability, and posttranslational modifications (PTMs) have not been well investigated. The present investigation involves five missense mutations that cause XLHED (L56P, R155C, P220L, V251M, and V322A) in different domains of EDA (TM, furin, collagen, and tumor necrosis factor [TNF]) from previously published papers. The deleterious nature of EDA mutant variants was identified using several computational algorithm tools. The point mutations induce major drifts in the structural flexibility of EDA mutant variants and have a negative impact on their stability, according to the 3D protein modeling tool assay. Using the molecular docking technique, EDA/EDA variants were docked to 10 EDA interacting partners, retrieved from the STRING database. We found a novel biomarker CD68 by molecular docking analysis, suggesting all five EDA variants had lower affinity for EDAR, EDA2R, and CD68, implying that they would affect embryonic signaling between the ectodermal and mesodermal cell layers. In silico research such as gene ontology, subcellular localization, protein-protein interaction, and PTMs investigations indicates major functional alterations would occur in EDA variants. According to molecular simulations, EDA variants influence the structural conformation, compactness, stiffness, and function of the EDA protein. Further studies on cell line and animal models might be useful in determining their specific roles in functional annotations.


Asunto(s)
Biología Computacional , Displasia Ectodermal Anhidrótica Tipo 1/genética , Ectodisplasinas/química , Ectodisplasinas/genética , Simulación del Acoplamiento Molecular , Mutación Missense , Sustitución de Aminoácidos , Displasia Ectodermal Anhidrótica Tipo 1/metabolismo , Ectodisplasinas/metabolismo , Humanos , Relación Estructura-Actividad
15.
Exp Cell Res ; 409(1): 112869, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34666056

RESUMEN

NODAL signaling plays an essential role in vertebrate embryonic patterning and heart development. Accumulating evidences suggest that genetic mutations in TGF-ß/NODAL signaling pathway can cause congenital heart disease in humans. To investigate the implication of NODAL signaling in isolated cardiovascular malformation, we have screened 300 non-syndromic CHD cases and 200 controls for NODAL and ACVR1B by Sanger sequencing and identified two rare missense (c.152C > T; p.P51L and c.981 T > A; p.D327E) variants in NODAL and a novel missense variant c.1035G > A; p.M345I in ACVR1B. All these variants are absent in 200 controls. Three-dimensional protein-modelling demonstrates that both p.P51L and p.D327E variations of NODAL and p.M345I mutation of ACVR1B, affect the tertiary structure of respective proteins. Variants of NODAL (p.P51L and p.D327E) and ACVR1B (p.M345I), significantly reduce the transactivation of AR3-Luc, (CAGA)12-Luc and (SBE)4-Luc promoters. Moreover, qRT-PCR results have also deciphered a reduction in the expression of cardiac-enriched transcription factors namely Gata4, Nkx2-5, and Tbx5 in both the mutants of NODAL. Decreased expression of, Gata4, Nkx2-5, Tbx5, and lefty is observed in p.M345I mutant of ACVR1B as well. Additionally, reduced phosphorylation of SMAD2/3 in response to these variants, suggests impaired NODAL signaling and possibly responsible for defective cell fate decision and differentiation of cardiomyocytes leading to CHD phenotype.


Asunto(s)
Receptores de Activinas Tipo I/genética , Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad/genética , Cardiopatías Congénitas/genética , Proteína Nodal/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Secuencia de Aminoácidos , Animales , Línea Celular , Femenino , Humanos , India , Masculino , Ratones
17.
Biochim Biophys Acta Gen Subj ; 1864(12): 129719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882363

RESUMEN

BACKGROUND: Renal Cell Carcinoma (RCC) is the ninth leading cause of death among kidney cancer. Xp11.2 translocation harboring TFE3 fusion proteins, act as an oncogene in translocation cancers that constitute the hallmark of translocation renal cell carcinoma (tRCC). G-quadruplex (G4), an alternative nucleic acid structure is an emerging and promising factor in cancer. The presence of G4 within the genome plays a pioneering role in cancer as it contributes to genomic aberration as well as inhibition in cell proliferation. SCOPE OF REVIEW: Here we discuss the link between G4 and tRCC. We compile the available information of G-quadruplex & propose their dual role in tRCC, suggesting both stabilization and destabilization of G-quadruplex could be considered targets for tRCC. MAJOR CONCLUSIONS: Our in Silico analysis of TFE3 and their three fusions partner's PRCC, SFPQ, and ASPSCR1 discloses a few putative G4 forming sequences (PQS) in their corresponding fusion gene or fusion transcript. Stabilization of G4 structure within fusion gene/transcript can be of great use towards potential therapeutics targeting fusion protein derived oncogenesis, as G4 is a serious menace for DNA polymerization, transcription & translation. G-quadruplex at intron-2 of the TFE3 has been reported to mediate its translocation also. Both stabilization and destabilization of the G4 structure would be a promising approach in the suppression of cancerous cell proliferation. GENERAL SIGNIFICANCE: Pioneering studies discovered the relevance of G4 in cancer therapy and explore our approaches towards therapeutic innovation against oncogenic fusion protein and tRCC. Selectively targeting G4 in oncogenic fusion transcript will emerge as potential druggable structures.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carcinoma de Células Renales/genética , G-Cuádruplex , Neoplasias Renales/genética , Translocación Genética , Animales , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/terapia , Humanos , Neoplasias Renales/patología , Neoplasias Renales/terapia , Modelos Moleculares , Proteínas de Fusión Oncogénica/genética
18.
Mutat Res ; 821: 111718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32823016

RESUMEN

BACKGROUND: Mutation screening of autosomal dominant polycystic kidney disease (ADPKD) cases imply the major involvement of PKD1 mutations in 85% of patients while rest of the cases harbor mutation in PKD2, DNAJB11 and GANAB. This essentially indicates that individual's genotype holds the key for disease susceptibility and its severity. METHODS: For finding genetic variability underlying the disease pathophysiology, 84 Indian ADPKD cases, 31 family members (12 susceptible) and 122 age matched control were screened for PKD1 and PKD2 using Sanger sequencing, PCR-RFLP and ARMS-PCR. RESULTS: Genetic screening of Indian ADPKD cases revealed total 67 variants in PKD1 and 28 variants in PKD2. Among the identified variants in PKD1 and PKD2 genes, 35.79% were novel variants and 64.2% recurrent. Further, subcategorization of PKD1 variants showed 14 truncation/frameshift, 21 nonsynonymous, 25 synonymous and 7 intronic variants. Moreover, we observed 40 families with PKD1 pathogenic variants, 7 families with PKD2 pathogenic variants, 9 families with PKD1 & PKD2 pathogenic variants, and 26 families with PKD1/PKD2/PKD1-PKD2 non-pathogenic genetic variants. CONCLUSION: Present study represented genetic background of Indian ADPKD cases which will be helpful in disease management as well as finding the genetically matched donor for kidney transplant.


Asunto(s)
Mutación , Riñón Poliquístico Autosómico Dominante/epidemiología , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Adulto , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Humanos , India/epidemiología , Masculino , Linaje
19.
Indian J Med Res ; 152(5): 498-507, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33707392

RESUMEN

BACKGROUND & OBJECTIVES: Parkinson's disease (PD) is a motor disorder that affects movement. More than 24 loci and 28 associated genes have been identified to be associated with this disease. The present study accounts for the contribution of two candidates, leucine-rich repeat kinase 2 ( LRRK2) and parkin RBR E3 ubiquitin protein ligase ( PRKN) in the PD patients, and their characterization in silico and in vitro. METHODS: A total of 145 sporadic PD cases and 120 ethnically matched healthy controls were enrolled with their informed consent. Mutation screening was performed by direct DNA sequencing of the targeted exons of LRRK2 and all exons flanking introns of PRKN. The effect of the pathogenic PRKN variants on a drug (MG-132) induced loss of mitochondrial membrane potential (△ΨM) was measured by a fluorescent dye tetramethylrhodamine methyl ester (TMRM). RESULTS: Twelve and 20 genetic variants were identified in LRRK2 and PRKN, respectively. Interestingly, five out of seven exonic LRRK2 variants were synonymous. Further assessment in controls confirmed the rarity of two such p.Y1527 and p.V1615. Among the pathogenic missense variations (as predicted in silico) in PRKN, two were selected (p.R42H and p.A82E) for their functional study in vitro, which revealed the reduced fluorescence intensity of TMRM as compared to wild type, in case of p.R42H but not the other. INTERPRETATION & CONCLUSIONS: About 6.2 per cent of the cases (9/145) in the studied patient cohort were found to carry pathogenic (as predicted in silico) missense variations in PRKN in heterozygous condition but not in case of LRRK2 which was rare. The presence of two rare synonymous variants of LRRK2 (p.Y1527 and p.V1615) may support the phenomenon of codon bias. Functional characterization of selected PRKN variations revealed p.R42H to cause disruption of mitochondrial membrane potential (△ΨM) rendering cells more susceptible to cellular stress.


Asunto(s)
Enfermedad de Parkinson , Humanos , Leucina , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética
20.
Bioconjug Chem ; 30(10): 2544-2554, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31498987

RESUMEN

The use of cationic polymer based gene delivery vectors has several limitations such as low transfection efficiency, high toxicity, and inactivation by serum. The present work provides an inorganic based nanocarrier for efficient gene delivery and a method for preparing the same through a facile coprecipitation technique. The vehicle showed high loading capacity of DNA and can release the loaded DNA in a controlled pH-responsive manner. The developed gene delivery vehicle offers remarkable protection against DNase I and also provides protection against thermal damage. This vehicle also demonstrated efficient cellular uptake performance. Transfection and expression of plasmid gene encoding GFP proteins is achieved successfully by this LDH based vehicle. More interestingly, the developed Li-Al LDH efficiently induces GFP-p53 mediated apoptosis in HeLa cells exclusively sparing the normal tissue cells like NIH-3T3. The study demonstrates the potential of the developed inorganic based nanocarrier as a promising nonviral gene vector for tumor treatment.


Asunto(s)
ADN/química , ADN/genética , Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Hidróxidos/química , Nanopartículas/química , Animales , Portadores de Fármacos/toxicidad , Células HeLa , Humanos , Hidróxidos/toxicidad , Ensayo de Materiales , Ratones , Células 3T3 NIH , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA