Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(9): 2735-2748, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749193

RESUMEN

We present the combustion-based synthesis of BiFeO3 (BFO) and Gd:BiFeO3 perovskite nanoparticles. XRD analysis demonstrates that the undoped BFO (x = 0) perovskite sample shows a single perovskite phase with a rhombohedral structure. However, increase in the Gd3+ content from x = 0.05 and 0.15 to 0.25 led to the occurrence of a structural phase transformation from rhombohedral (BiFeO3) to orthorhombic (Bi2Fe4O9). With an increase in the Gd-dopant the average crystallite size of rhombohedral structures increased from 16 to 23 nm. The perovskite samples were examined using XPS, which confirmed the presence of Bi3+, Gd3+, Fe2+, and O2+ ions. FT-IR spectroscopy indicated the existence of elemental functional groups in the synthesized perovskite nanoparticles. Furthermore, the direct band gap measured by DRS reduced from 2.16 to 2.0 eV as the Gd concentration increased. The nanoparticles of the BFO perovskite had an uneven shape, a tendency to agglomerate, and fused grains with defined grain boundaries. At ambient temperature, both the undoped and Gd:BFO perovskite nanoparticles exhibit a ferromagnetic characteristic. It was found that the BET surface area of the undoped and Gd-doped BFO perovskite nanoparticles varied progressively from 4.38 to 33.52 m2 g-1. The catalytic oxidation studies conducted in a batch reactor under air conditions revealed that the synthesized catalysts, in particular, Gd:BFO (x = 0.25), exhibited higher conversion and selectivity efficiencies for glycerol (con. 100% and sel. 99.5%, respectively).

2.
J Nanosci Nanotechnol ; 21(11): 5659-5665, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33980377

RESUMEN

In the present study, combustion technique is adopted to study the impact of Mg2+ ion doping on ZnAI2O4 nanoparticles (NPs). L-arginine is used as a fuel component. The Mg2+ ions play a pivotal role in persuading various characteristics of ZnAI2O4 NPs. Various characterization technqiues such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), Thermo-gravimetric/differential thermal analysis (TG-DTA) and vibrating sample magnetometer (VSM) were carried out in order to synthesize the nanoparticles. Single phase cubic spinel structure of ZnAl2O4 (gahnite) formation was confirmed from the XRD characterization process of the nanoparticles. Estimated average crystallite size range of 11.85 nm to 19.02 nm was observed from Debye-Scherrer. Spherical morphology with uniform distributions was observed from HR-SEM characterization images. From the band gap studies, the attained band gap values were found to lie within 5.41 eV-4.66 eV range. The ZnAl2O4 and Mg:ZnAl2O4 NPs exhibited super-paramagnetic nature confirmed by magnetic measurements. The obtained results make ZnAl2O 4and Mg:ZnAl2O4 NPs appropriate for various optical, catalytic, energy and data storage applications.

3.
J Nanosci Nanotechnol ; 20(4): 2382-2388, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31492251

RESUMEN

Zn1-xCoxAl2O4 (0 ≤ x ≤ 0.5) nanoparticles were synthesized employing L-alanine as fuel using MACT (microwave assisted combustion technique). The synthesized samples were characterized following methods such as X-ray Diffraction, high resolution scanning electron microscopy, Energydispersive X-ray spectroscopy; UV-visible diffused reflectance spectroscopy, FT-IR and VSM. The XRD confirmed the cubic spinel structure and the average crystallite size observed lying in the range of 12-19 nm deduced using the Debye Scherrer's equation. The morphology of the Zn1-xCoxAl2O4 (0 ≤ x ≤ 0.5) nanoparticles is observed using HR-SEM. EDX analysis is opted for the elemental mapping of pure and cobalt doped zinc aluminate nanoparticles. Further band gap value was calculated using Kubelka Munk function, which was seen lying within 3.73 to 5.45 eV. The strong absorption band at 669, 556 and 500 cm-1 was associated with the vibrations of Zn-O, Al-O and Zn-O-Al of zinc aluminate nanoparticles. The hysteresis loops exhibited conversion from diamagnetic into super paramagnetic behaviour with increase in Co doping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA