Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 3862, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594130

RESUMEN

With a rise in human induced changes to natural habitats, large predators are forced to share space and resources with people to coexist within multiple-use landscapes. Within such shared landscapes, co-occurrence of humans and predators often leads to human-carnivore conflicts and pose a substantial challenge for biodiversity conservation. To better elucidate large carnivore space use within a hotspot of human-wildlife conflicts, we used GPS data for leopards (N = 6) to identify behavioral states and document spatial patterns of resource selection in response to season and human activity periods within a fragmented landscape of North Bengal, eastern India. We identified two major behavioral states (i.e. resting and travelling). From the resource selection models, we found leopards selected habitats with dense to moderate vegetation cover and proximity to water while resting and travelling within the landscape. During the dry season, when risk of human-leopard conflicts is highest, leopards selected tea plantations, forest patches but avoided protected areas. These results suggest a potential for increase in human-carnivore conflicts and a strategy to conserve large predators within multiple-use landscapes of South Asia.


Asunto(s)
Efectos Antropogénicos , Panthera/psicología , Conducta Espacial , Animales , Femenino , Humanos , India , Masculino , Movimiento , Estaciones del Año
2.
Sci Rep ; 10(1): 11129, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636421

RESUMEN

Conflict with humans is a significant source of mortality for large carnivores globally. With rapid loss of forest cover and anthropogenic impacts on their habitats, large carnivores are forced to occupy multi-use landscapes outside protected areas. We investigated 857 attacks on livestock in eastern Himalaya and 375 attacks in western Himalaya by leopards between 2015 and 2018. Multivariate analyses were conducted to identify the landscape features which increased the probability of livestock depredation by leopards. The risk of a leopard killing livestock increased within a heterogeneous landscape matrix comprising of both closed and open habitats (very dense forests, moderate dense forests, open forests, scrubland and non-forests). We used the results to map potential human-leopard conflict hotspots across parts of the Indian Himalayan region. Our spatial risk maps indicate pockets in the eastern, central and western part of eastern Himalaya and the central, northern part of western Himalaya as hotspots of human-leopard conflicts. Most of the attacks occurred when livestock were grazing freely within multi-use areas without supervision of a herder. Our results suggest that awareness about high risk areas, supervised grazing, and removing vegetation cover around human settlements should be initiated to reduce predation by leopards.


Asunto(s)
Animales Salvajes , Ecosistema , Panthera , Altitud , Animales , Bután , Cadena Alimentaria , Bosques , Humanos , India , Ganado , Nepal , Estaciones del Año
3.
PeerJ ; 8: e9399, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676222

RESUMEN

Loss of forest cover, rise in human populations and fragmentation of habitats leads to decline in biodiversity and extinction of large mammals globally. Elephants, being the largest of terrestrial mammals, symbolize global conservation programs and co-occur with humans within multiple-use landscapes of Asia and Africa. Within such shared landscapes, poaching, habitat loss and extent of human-elephant conflicts (HEC) affect survival and conservation of elephants. HEC are severe in South Asia with increasing attacks on humans, crop depredation and property damage. Such incidents reduce societal tolerance towards elephants and increase the risk of retaliation by local communities. We analyzed a 2-year dataset on crop depredation by Asian elephants (N = 380) events in North Bengal (eastern India). We also explored the effect of landscape, anthropogenic factors (area of forest, agriculture, distance to protected area, area of human settlements, riverine patches and human density) on the spatial occurrence of such incidents.Crop depredation showed a distinct nocturnal pattern (22.00-06:00) and majority of the incidents were recorded in the monsoon and post-monsoon seasons. Results of our spatial analysis suggest that crop depredation increased with an increase in the area of forest patches, agriculture, presence of riverine patches and human density. Probability of crop depredation further increased with decreasing distance from protected areas. Villages within 1.5 km of a forest patch were most affected. Crop raiding incidents suggest a deviation from the "high-risk high-gain male biased" foraging behavior and involved proportionately more mixed groups (57%) than lone bulls (43%). Demographic data suggest that mixed groups comprised an average of 23 individuals with adult and sub adult females, bulls and calves. Crop depredation and fatal elephant attacks on humans were spatially clustered with eastern, central and western parts of North Bengal identified as hotspots of HEC. Our results will help to prioritize mitigation measures such as prohibition of alcohol production within villages, improving condition of riverine patches, changing crop composition, fencing agriculture fields, implement early warning systems around protected areas and training local people on how to prevent conflicts.

4.
PLoS One ; 14(2): e0210580, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30707690

RESUMEN

It is of utmost importance to research on the spatial patterns of human-wildlife conflicts to understand the underlying mechanism of such interactions, i.e. major land use changes and prominent ecological drivers. In the north eastern part of India there has been a disparity between nature, economic development and fragmentation of wildlife habitats leading to intense conflicts between humans and Asian elephants (Elephas maximus) in recent times. Both the elephant and human population have increased in the past few decades with large tracts of forests converted to commercial tea plantations, army camps and human settlements. We analyzed data maintained by the wildlife department on human deaths and injuries caused by elephant attacks between 2006-2016 to understand spatial and temporal patterns of human-elephant conflict, frequency and distribution. The average annual number of human deaths and injuries to elephant attacks between 2006 to 2016 was estimated to be 212 (SE 103) with the highest number of such incidents recorded in 2010-2011. Based on a grid based design of 5 km2 and 25 km2 resolution, the main spatial predictors of human-elephant conflicts identified through Maxent presence only models are annual mean precipitation, altitude, distance from protected area, area under forests, tea plantations and agriculture. Major land use changes were assessed for this region from 2008 to 2018 using satellite imageries in Arc GIS and a predicted imagery of 2028 was prepared using Idrisi Selva. Based on the 2018 imagery it was found that forest area had increased by 446 km2 within 10 years (2008-2018) and the annual rate of change was 12%. Area under agriculture had reduced by 128 km2 with an annual (-) rate of change of 2.5%. Area under tea plantation declined by 307 km2 with an annual (-) rate of change of 12% whereas area under human settlements increased by 61 km2 with an annual (-) rate of change of 44%. Hotspots of human-elephant conflicts were identified in an east west direction primarily around protected areas, tea plantations and along major riverine corridors. During informal interactions with farmers, tea estate labors it was revealed that local community members chased and harassed elephants from agriculture fields, human settlements under the influence of alcohol and thus were primary victims of fatal interactions. Our analytical approach can be replicated for other species in sites with similar issues of human-wildlife conflicts. The hotspot maps of conflict risk will help in developing appropriate mitigation strategies such as setting up early warning systems, restoration of wildlife corridors especially along dry river beds, using deterrents and barriers for vulnerable. Awareness about alcohol related incidents and basic biology of elephants should be organized regularly involving non-governmental organizations targeting the marginalized farmers and tea estate workers.


Asunto(s)
Animales Salvajes , Ecosistema , Elefantes , Especies en Peligro de Extinción , Agricultura , Animales , Animales Salvajes/fisiología , Elefantes/fisiología , Humanos , India/epidemiología , Densidad de Población , Conducta Predatoria , Heridas y Lesiones/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...