Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(15): 4117-4124, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38591741

RESUMEN

Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement ("hot spots"). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored. Here, we demonstrate how the capping ligand, suspension solvent, and atomization conditions used for aerosol generation control the steady-state optical properties of aerosolized Silica@Au plasmonic nanoshells. Our experimental results, supported with spectral simulations, illustrate that ligand coverage and atomization conditions control the degree of solvent retention and thus the spectral characteristics and potential access to surfaces for catalysis in the aerosol phase, opening a new regime for tunable applications of plasmonic metamaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...