Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 901, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048679

RESUMEN

The WWE domain is a relatively under-researched domain found in twelve human proteins and characterized by a conserved tryptophan-tryptophan-glutamate (WWE) sequence motif. Six of these WWE domain-containing proteins also contain domains with E3 ubiquitin ligase activity. The general recognition of poly-ADP-ribosylated substrates by WWE domains suggests a potential avenue for development of Proteolysis-Targeting Chimeras (PROTACs). Here, we present novel crystal structures of the HUWE1, TRIP12, and DTX1 WWE domains in complex with PAR building blocks and their analogs, thus enabling a comprehensive analysis of the PAR binding site structural diversity. Furthermore, we introduce a versatile toolbox of biophysical and biochemical assays for the discovery and characterization of novel WWE domain binders, including fluorescence polarization-based PAR binding and displacement assays, 15N-NMR-based binding affinity assays and 19F-NMR-based competition assays. Through these assays, we have characterized the binding of monomeric iso-ADP-ribose (iso-ADPr) and its nucleotide analogs with the aforementioned WWE proteins. Finally, we have utilized the assay toolbox to screen a small molecule fragment library leading to the successful discovery of novel ligands targeting the HUWE1 WWE domain.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Humanos , Ligandos , Unión Proteica , Sitios de Unión , Dominios Proteicos , Modelos Moleculares , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Cristalografía por Rayos X , Descubrimiento de Drogas/métodos
2.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328070

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polß, and FUS partition in PARP1 condensates, although in different patterns. While Polß and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polß partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.

3.
Cell Rep Methods ; 3(5): 100484, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323576

RESUMEN

ADP-ribosylation is a complex post-translation modification involved in DNA repair. In a recent Molecular Cell publication, Longarini and colleagues measured ADP-ribosylation dynamics with unprecedented specificity, revealing how the monomeric and polymeric forms of ADP-ribosylation regulate the timing of DNA repair events following strand breaks.


Asunto(s)
Reparación del ADN , Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , ADP-Ribosilación
4.
Mol Cell ; 83(10): 1552-1572, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37119811

RESUMEN

PARPs catalyze ADP-ribosylation-a post-translational modification that plays crucial roles in biological processes, including DNA repair, transcription, immune regulation, and condensate formation. ADP-ribosylation can be added to a wide range of amino acids with varying lengths and chemical structures, making it a complex and diverse modification. Despite this complexity, significant progress has been made in developing chemical biology methods to analyze ADP-ribosylated molecules and their binding proteins on a proteome-wide scale. Additionally, high-throughput assays have been developed to measure the activity of enzymes that add or remove ADP-ribosylation, leading to the development of inhibitors and new avenues for therapy. Real-time monitoring of ADP-ribosylation dynamics can be achieved using genetically encoded reporters, and next-generation detection reagents have improved the precision of immunoassays for specific forms of ADP-ribosylation. Further development and refinement of these tools will continue to advance our understanding of the functions and mechanisms of ADP-ribosylation in health and disease.


Asunto(s)
ADP-Ribosilación , Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Difosfato Ribosa/metabolismo
5.
Cell Rep ; 41(4): 111529, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288691

RESUMEN

PARP13/ZAP (zinc-finger antiviral protein) acts against multiple viruses by promoting degradation of viral mRNA. PARP13 has four N-terminal zinc (Zn) fingers that bind CG-rich nucleotide sequences, a C-terminal ADP ribosyltransferase fold, and a central region with a fifth Zn finger and tandem WWE domains. The central PARP13 region, ZnF5-WWE1-WWE2, is implicated in binding poly(ADP-ribose); however, there are limited insights into its structure and function. We present crystal structures of ZnF5-WWE1-WWE2 from mouse PARP13 in complex with ADP-ribose and in complex with ATP. The crystal structures and binding studies demonstrate that WWE2 interacts with ADP-ribose and ATP, whereas WWE1 does not have a functional binding site. Binding studies with poly(ADP-ribose) ligands indicate that WWE2 serves as an anchor for preferential binding to the terminal end of poly(ADP-ribose) chains. The composite ZnF5-WWE1-WWE2 structure forms an extended surface to engage ADP-ribose chains, representing a distinctive mode of recognition that provides a framework for investigating the impact of poly(ADP-ribose) on PARP13 function.


Asunto(s)
Adenosina Difosfato Ribosa , Poli Adenosina Difosfato Ribosa , Ratones , Animales , Adenosina Difosfato Ribosa/metabolismo , Dedos de Zinc , ADP Ribosa Transferasas/metabolismo , ARN Mensajero/genética , Antivirales , Zinc , Adenosina Trifosfato
6.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103513

RESUMEN

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Asunto(s)
Demencia Frontotemporal , Arginina , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Poli Adenosina Difosfato Ribosa
7.
Mol Cell ; 82(5): 969-985.e11, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182479

RESUMEN

Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 µM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 µM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Poli Adenosina Difosfato Ribosa , Esclerosis Amiotrófica Lateral/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , ARN/genética , Proteína FUS de Unión a ARN/metabolismo
8.
ACS Chem Biol ; 17(1): 17-23, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34904435

RESUMEN

Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.


Asunto(s)
Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , N-Glicosil Hidrolasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Dasatinib/farmacología , Dominios Proteicos , SARS-CoV-2/enzimología
9.
J Am Chem Soc ; 143(8): 3037-3042, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33596067

RESUMEN

Post-translational modification of proteins with poly(ADP-ribose) (PAR) is an important component of the DNA damage response. Four PAR synthesis inhibitors have recently been approved for the treatment of breast, ovarian, and prostate cancers. Despite the clinical significance of PAR, a molecular understanding of its function, including its binding partners, remains incomplete. In this work, we synthesized a PAR photoaffinity probe that captures and isolates endogenous PAR binders. Our method identified dozens of known PAR-binding proteins and hundreds of novel candidates involved in DNA repair, RNA processing, and metabolism. PAR binding by eight candidates was confirmed using pull-down and/or electrophoretic mobility shift assays. Using PAR probes of defined lengths, we detected proteins that preferentially bind to 40-mer versus 8-mer PAR, indicating that polymer length may regulate the outcome and timing of PAR signaling pathways. This investigation produces the first census of PAR-binding proteins, provides a proteomics analysis of length-selective PAR binding, and associates PAR binding with RNA metabolism and the formation of biomolecular condensates.


Asunto(s)
Luz , Sondas Moleculares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteómica/métodos , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Transducción de Señal
10.
mBio ; 11(1)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047134

RESUMEN

Macrodomain (MD), a highly conserved protein fold present in a subset of plus-strand RNA viruses, binds to and hydrolyzes ADP-ribose (ADPr) from ADP-ribosylated proteins. ADPr-binding by the alphavirus nonstructural protein 3 (nsP3) MD is necessary for the initiation of virus replication in neural cells, whereas hydrolase activity facilitates replication complex amplification. To determine the importance of these activities for pathogenesis of alphavirus encephalomyelitis, mutations were introduced into the nsP3 MD of Sindbis virus (SINV), and the effects on ADPr binding and hydrolase activities, virus replication, immune responses, and disease were assessed. Elimination of ADPr-binding and hydrolase activities (G32E) severely impaired in vitro replication of SINV in neural cells and in vivo replication in the central nervous systems of 2-week-old mice with reversion to wild type (WT) (G) or selection of a less compromising change (S) during replication. SINVs with decreased binding and hydrolase activities (G32S and G32A) or with hydrolase deficiency combined with better ADPr-binding (Y114A) were less virulent than WT virus. Compared to the WT, the G32S virus replicated less well in both the brain and spinal cord, induced similar innate responses, and caused less severe disease with full recovery of survivors, whereas the Y114A virus replicated well, induced higher expression of interferon-stimulated and NF-κB-induced genes, and was cleared more slowly from the spinal cord with persistent paralysis in survivors. Therefore, MD function was important for neural cell replication both in vitro and in vivo and determined the outcome from alphavirus encephalomyelitis in mice.IMPORTANCE Viral encephalomyelitis is an important cause of long-term disability, as well as acute fatal disease. Identifying viral determinants of outcome helps in assessing disease severity and developing new treatments. Mosquito-borne alphaviruses infect neurons and cause fatal disease in mice. The highly conserved macrodomain of nonstructural protein 3 binds and can remove ADP-ribose (ADPr) from ADP-ribosylated proteins. To determine the importance of these functions for virulence, recombinant mutant viruses were produced. If macrodomain mutations eliminated ADPr-binding or hydrolase activity, viruses did not grow. If the binding and hydrolase activities were impaired, the viruses grew less well than the wild-type virus, induced similar innate responses, and caused less severe disease, and most of the infected mice recovered. If binding was improved, but hydrolase activity was decreased, the virus replicated well and induced greater innate responses than did the WT, but clearance from the nervous system was impaired, and mice remained paralyzed. Therefore, macrodomain function determined the outcome of alphavirus encephalomyelitis.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Hidrolasas/metabolismo , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Adenosina Difosfato Ribosa/genética , Animales , Encéfalo/virología , Línea Celular , Encefalomielitis/virología , Femenino , Hidrolasas/genética , Ratones , Mutación , Neuronas/virología , Transducción de Señal , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral/genética
11.
Mol Cell ; 75(6): 1089-1091, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539506

RESUMEN

In this issue of Molecular Cell, Kim et al. (2019) identify small nucleolar RNAs (snoRNAs) as activators of poly(ADP-ribose) (PAR) synthesis, demonstrating that this snoRNA-PAR partnership promotes cancer cell growth independent of DNA repair pathways.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , ARN Nucleolar Pequeño , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas , ARN Helicasas , Ribosomas
12.
Mol Cell ; 73(4): 845-856.e5, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712989

RESUMEN

ADP-ribosylation refers to the addition of one or more ADP-ribose groups onto proteins. The attached ADP-ribose monomers or polymers, commonly known as poly(ADP-ribose) (PAR), modulate the activities of the modified substrates or their binding affinities to other proteins. However, progress in this area is hindered by a lack of tools to investigate this protein modification. Here, we describe a new method named ELTA (enzymatic labeling of terminal ADP-ribose) for labeling free or protein-conjugated ADP-ribose monomers and polymers at their 2'-OH termini using the enzyme OAS1 and dATP. When coupled with various dATP analogs (e.g., radioactive, fluorescent, affinity tags), ELTA can be used to explore PAR biology with techniques routinely used to investigate DNA or RNA function. We demonstrate that ELTA enables the biophysical measurements of protein binding to PAR of a defined length, detection of PAR length from proteins and cells, and enrichment of sub-femtomole amounts of ADP-ribosylated peptides from cell lysates.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , ADP-Ribosilación , Adenosina Difosfato Ribosa/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Animales , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos , Células Sf9 , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...