Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(33): e2402156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38869191

RESUMEN

Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.

2.
Adv Mater ; 35(49): e2211884, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37549889

RESUMEN

Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here,  the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.

3.
Small ; 19(27): e2208076, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36971280

RESUMEN

Developing low-cost and high-performance transition metal-based electrocatalysts is crucial for realizing sustainable hydrogen evolution reaction (HER) in alkaline media. Here, a cooperative boron and vanadium co-doped nickel phosphide electrode (B, V-Ni2 P) is developed to regulate the intrinsic electronic configuration of Ni2 P and promote HER processes. Experimental and theoretical results reveal that V dopants in B, V-Ni2 P greatly facilitate the dissociation of water, and the synergistic effect of B and V dopants promotes the subsequent desorption of the adsorbed hydrogen intermediates. Benefiting from the cooperativity of both dopants, the B, V-Ni2 P electrocatalyst requires a low overpotential of 148 mV to attain a current density of -100 mA cm-2  with excellent durability. The B, V-Ni2 P is applied as the cathode in both alkaline water electrolyzers (AWEs) and anion exchange membrane water electrolyzers (AEMWEs). Remarkably, the AEMWE delivers a stable performance to achieve 500 and 1000 mA cm-2  current densities at a cell voltage of 1.78 and 1.92 V, respectively. Furthermore, the developed AWEs and AEMWEs also demonstrate excellent performance for overall seawater electrolysis.

4.
Nat Commun ; 14(1): 547, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725848

RESUMEN

Electrocatalytic synergy is a functional yet underrated concept in electrocatalysis. Often, it materializes as intermetallic interaction between different metals. We demonstrate interphasic synergy in monometallic structures is as much effective. An interphasic synergy between Ni(OH)2 and Ni-N/Ni-C phases is reported for alkaline hydrogen evolution reaction that lowers the energy barriers for hydrogen adsorption-desorption and facilitates that of hydroxyl intermediates. This makes ready-to-serve Ni active sites and allocates a large amount of Ni d-states at Fermi level to promote charge redistribution from Ni(OH)2 to Ni-N/Ni-C and the co-adsorption of Hads and OHads intermediates on Ni-N/Ni-C moieties. As a result, a Ni(OH)2@Ni-N/Ni-C hetero-hierarchical nanostructure is developed, lowering the overpotentials to deliver -10 and -100 mA cm-2 in alkaline media by 102 and 113 mV, respectively, compared to monophasic Ni(OH)2 catalyst. This study unveils the interphasic synergy as an effective strategy to design monometallic electrocatalysts for water splitting and other energy applications.

6.
Chem Rev ; 121(17): 10271-10366, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34228446

RESUMEN

Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.


Asunto(s)
Catálisis , Metales , Nanoestructuras/química , Energía Renovable , Metales/química , Agua/química
7.
Adv Mater ; 33(8): e2006351, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33458883

RESUMEN

The conjugation of metal-organic frameworks (MOFs) into different multicomponent materials to precisely construct aligned heterostructures is fascinating but elusive owing to the disparate interfacial energy and nucleation kinetics. Herein, a promising lattice-matching growth strategy is demonstrated for conductive MOF/layered double hydroxide (cMOF/LDH) heteronanotube arrays with highly ordered hierarchical porous structures enabling an ultraefficient oxygen evolution reaction (OER). CoNiFe-LDH nanowires are used as interior template to engineer an interface by inlaying cMOF and matching two crystal lattice systems, thus conducting a graft growth of cMOF/LDH heterostructures along the LDH nanowire. A class of hierarchical porous cMOF/LDH heteronanotube arrays is produced through continuously regulating the transformation degree. The synergistic effects of the cMOF and LDH components significantly promote the chemical and electronic structures of the heteronanotube arrays and their electroactive surface area. Optimized heteronanotube arrays exhibit extraordinary OER activity with ultralow overpotentials of 216 and 227 mV to deliver current densities of 50 and 100 mA cm-2 with a small Tafel slope of 34.1 mV dec-1 , ranking it among the best MOF and non-noble-metal-based catalysts for OER. The robust performance under high current density and vigorous gas bubble conditions enable such hierarchical MOF/LDH heteronanotube arrays as promising materials for practical water electrolysis.

8.
Small ; 16(32): e2002412, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32627936

RESUMEN

Surface chemistry is a pivotal prerequisite besides catalyst composition toward advanced water electrolysis. Here, an evident enhancement of the oxygen evolution reaction (OER) is demonstrated on a vanadate-modified iron-nickel catalyst synthesized by a successive ionic layer adsorption and reaction method, which demonstrates ultralow overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm-2 , respectively, in 1 m KOH, where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity by i) increasing the electrochemical surface area and intrinsic activity of the active sites, ii) having an electronic interplay with Fe and Ni catalytic centers, and iii) inducing a high surface wettability and a low-gas bubble-adhesion for accelerated mass transport and gas bubble dissipation at large current densities. Ex situ and operando Raman study reveals the structural evolution of ß-NiOOH and γ-FeOOH phases during the OER through vanadate-active site synergistic interactions. Operando dynamic specific resistance measurement evidences an accelerated gas bubble dissipation by a significant decrease in the variation of the interfacial resistance during the OER for the vanadate-modified surface. Achievement of a high catalytic turnover of 0.12 s-1 suggests metallic oxo-anion modification as a versatile catalyst design strategy for advanced water oxidation.

9.
Chem Sci ; 12(5): 1886-1890, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34163951

RESUMEN

Low-valent aluminum Al(i) chemistry has attracted extensive research interest due to its unique chemical and catalytic properties but is limited by its low stability. Herein, a hourglass phosphomolybdate cluster with a metal-center sandwiched by two benzene-like planar subunits and large steric-hindrance is used as a scaffold to stabilize low-valent Al(i) species. Two hybrid structures, (H3O)2(H2bpe)11[AlIII(H2O)2]3{[AlI(P4MoV 6O31H6)2]3·7H2O (abbr. Al6{P4Mo6}6) and (H3O)3(H2bpe)3[AlI(P4MoV 6O31H7)2]·3.5H2O (abbr. Al{P4Mo6}2) (bpe = trans-1,2-di-(4-pyridyl)-ethylene) were successfully synthesized with Al(i)-sandwiched polyoxoanionic clusters as the first inorganic-ferrocene analogues of a monovalent group 13 element with dual Lewis and Brønsted acid sites. As dual-acid catalysts, these hourglass structures efficiently catalyze a solvent-free four-component domino reaction to synthesize 1,5-benzodiazepines. This work provides a new strategy to stabilize low-valent Al(i) species using a polyoxometalate scaffold.

10.
Chemphyschem ; 20(22): 2936-2945, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31264336

RESUMEN

Electrochemical water splitting by renewable energy resources is an efficient and green approach for hydrogen gas production. However, the anodic oxygen evolution reaction (OER) largely impedes the industrial application due to its sluggish four-electron-transition kinetics. Although various materials have been developed to accelerate the OER rate, still some issues should be addressed to meet the industrial demand: (i) considerable 200-300 mV overpotential as extra onset energy input, (ii) limited survival and performance in acidic electrolyte for the majority of oxide/hydroxide composite materials, (iii) unsatisfying long-term durability and (iv) the need for facile and scalable preparation methods. Here, we emphasize on multi-metallic composites with enhanced OER activity based on both precious and nonprecious elements that outperform the unary and binary composites. The regulation effect from multi-metal incorporation is also summarized systematically: (i) introducing foreign metal atoms to the host material boosts the physical properties such as conductivity, surface area, defect density, morphology, wettability, etc., (ii) metal doping can synergistically regulate the electronic features of the host material, e. g. oxygen vacancy, eg orbit filling, coordinative number and covalence state, which can optimize the absorption/desorption energy of the M-O intermediate, (iii) chaotic impact from the added atoms twists the catalyst lattice into a more aggressive and higher energy state, which is more feasible to transform to an active intermediate with lower required energy supply. This review aims to provide a practical approach to further improve the OER performance via multi-metallic-based catalysts.

11.
Ultrason Sonochem ; 42: 97-111, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29429739

RESUMEN

An advanced sol-gel method is developed via combined ultrasound-microwave irradiation and utilized for the crystallization of pristine and samarium doped zinc oxide nanorods. Organic structure directing agents directed one dimensional growth and air-annealing was applied as post-thermal treatment. Microstructural, optical, and solid state survey was pursued by PXRD, FESEM, TEM, EDS, FTIR, DRS, PL, micro-Raman, H2-TPR, and ESR techniques. Phase analysis by diffraction patterns confirmed the efficacy of irradiation strategy as it improves the crystallinity degree, expedites the hexagonal close pack morphology, and conducts lattice imperfection. Accordingly, aspect ratio and electronic evolution parallel to dopant content is favored. Electron microscopy demonstrated the flake-like rearrangement of nanorods as well as a structure-related growth where a direct proportion exists between atomic packing factor in lattice and aspect ratio. Textural investigation by EDS and FTIR rejected the presence of any impurity verifying an integrated composition. Reflectance and luminescence spectra exhibited characteristic optical behavior with shifts corresponding to dopant concentration. Also, band gap energies increased with samarium addition depicting an opposite trend with respect to unit cell variation. Finally, Raman, TPR, and ESR spectra provided detailed dopant-dependent trends on the internal solid state and defect chemistry of the nanorods. In this regard, maximum shifts in E2high and E1LO phonon modes duly correlated with the vibrations of zinc and oxygen atoms, surface oxygen and bulk ZnO reduction bands, emergence and alteration of samarium centers, along with the dominance of zinc and oxygen vacancies were all resulted due to the utmost lattice imperfection in SZO1.

12.
J Colloid Interface Sci ; 478: 271-9, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27309947

RESUMEN

Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes.

13.
Talanta ; 144: 1377-86, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452972

RESUMEN

In recent years there has been a rising interest in the application of nanomaterial such as silver nanoparticles (AgNps) in many areas of scientific research. The most active areas of investigation are related to the study and application of optical, biomedical, and newly applied adsorption properties of AgNps. The recent evaluation of adsorptive properties of AgNPs has added new areas to their wide range of applications in analytical separations and pre-concentrating steps. They have also been used for removal of several environmental organic pollutants and uptake of heavy metals. The main objective of this review is to describe the characteristics, mechanisms, and behavior of AgNPs as adsorbent in aquatic systems and sample solutions.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Agua/química , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...