Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37056473

RESUMEN

Photochemical and mechanical stability are critical in the production and application of organic solar cells. While these factors can individually be improved using different additives, there is no example of studies on the combined effects of such additive-assisted stabilization. In this study, the properties of PTB7:[70]PCBM organic solar cells are studied upon implementation of two additives: the carotenoid astaxanthin (AX) for photochemical stability and the silicone polydimethylsiloxane (PDMS) for improved mechanical properties. A newly designed additive, AXcPDMS, based on astaxanthin covalently bonded to PDMS was also examined. Lifetime tests, produced in ISOS-L-2 conditions, reveal an improvement in the accumulated power generation (APG) of 10% with pure AX, of 90% when AX is paired with PDMS, and of 140% when AXcPDMS is added in the active layer blend, as compared to the control devices. Singlet oxygen phosphorescence measurements are utilized to study the ability of AX and AXcPDMS to quench singlet oxygen and its precursors in the films. The data are consistent with the strong stabilization effect of the carotenoids. While AX and AXcPDMS are both efficient photochemical stabilizers, the improvement in device stability observed in the presence of AXcPDMS is likely due to a more favorable localization of the stabilizer within the blend. The mechanical properties of the active layers were investigated by tensile testing and cohesive fracture measurements, showing a joint improvement of the photooxidative stability and the mechanical properties, thus yielding organic solar cell devices that are promising for flexible photovoltaic applications.

2.
J Phys Chem Lett ; 8(6): 1278-1282, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28256139

RESUMEN

The perovskite phase of cesium lead iodide (α-CsPbI3 or "black" phase) possesses favorable optoelectronic properties for photovoltaic applications. However, the stable phase at room temperature is a nonfunctional "yellow" phase (δ-CsPbI3). Black-phase polycrystalline thin films are synthesized above 330 °C and rapidly quenched to room temperature, retaining their phase in a metastable state. Using differential scanning calorimetry, it is shown herein that the metastable state is maintained in the absence of moisture, up to a temperature of 100 °C, and a reversible phase-change enthalpy of 14.2 (±0.5) kJ/mol is observed. The presence of atmospheric moisture hastens the black-to-yellow conversion kinetics without significantly changing the enthalpy of the transition, indicating a catalytic effect, rather than a change in equilibrium due to water adduct formation. These results delineate the conditions for trapping the desired phase and highlight the significant magnitude of the entropic stabilization of this phase.

3.
Nano Lett ; 16(6): 3563-70, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27135266

RESUMEN

Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...