Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175777

RESUMEN

Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.


Asunto(s)
Inflamación , Meningitis Bacterianas , Humanos , Inflamación/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/efectos adversos , Simulación del Acoplamiento Molecular , Farmacología en Red , Microglía/metabolismo , Meningitis Bacterianas/metabolismo , FN-kappa B/metabolismo
2.
Int J Pharm ; 640: 123037, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37172632

RESUMEN

Nanotechnology plays an integral role in multimodal analgesia. In this study, we co-encapsulated metformin (Met) and curcumin (Cur) into chitosan/alginate (CTS/ALG) nanoparticles (NPs) at their synergistic drug ratio by applying response surface methodology. The optimized Met-Cur-CTS/ALG-NPs were achieved with Pluronic® F-127 2.33 % (w/v), Met 5.91 mg, and CTS:ALG mass ratio 0.05:1. The prepared Met-Cur-CTS/ALG-NPs had 243 nm particle size, -21.6 mV zeta potential, 32.6 and 44.2 % Met and Cur encapsulations, 19.6 and 6.8 % Met and Cur loading, respectively, and 2.9:1 Met:Cur mass ratio. Met-Cur-CTS/ALG-NPs displayed stability under simulated gastrointestinal (GI) fluid conditions and during storage. In vitro release study of Met-Cur-CTS/ALG-NPs in simulated GI fluids showed sustained release, with Met exhibiting Fickian diffusion and Cur demonstrating non-Fickian diffusion following the Korsmeyer-Peppas model. Met-Cur-CTS/ALG-NPs exhibited increased mucoadhesion and improved cellular uptake in Caco-2 cells. Additionally, Met-Cur-CTS/ALG-NPs exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophage and BV-2 microglial cells than the equivalent amount of the Met-Cur physical mixture, indicating a greater ability to modulate peripheral and central immune mechanisms of pain. In the mouse formalin-induced pain model, Met-Cur-CTS/ALG-NPs administered orally exhibited better attenuation of pain-like behaviors and proinflammatory cytokine release compared to the Met-Cur physical mixture. Furthermore, Met-Cur-CTS/ALG-NPs did not induce significant side effects in mice at therapeutic doses. Altogether, the present study establishes a CTS/ALG nano-delivery system for Met-Cur combination against pain with improved efficacy and safety.


Asunto(s)
Quitosano , Curcumina , Metformina , Nanopartículas , Humanos , Ratones , Animales , Portadores de Fármacos , Curcumina/farmacología , Quitosano/farmacología , Células CACO-2 , Alginatos/farmacología , Tamaño de la Partícula
3.
RSC Adv ; 13(16): 10757-10767, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37025673

RESUMEN

Central nervous system (CNS) diseases are a significant health burden globally, with the development of novel drugs lagging behind clinical needs. Orchidaceae plants have been traditionally used to treat CNS diseases, leading to the identification of therapeutic leads against CNS diseases from the Aerides falcata orchid plant in the present study. The study isolated and characterized ten compounds, including a previously undescribed biphenanthrene derivative, Aerifalcatin (1), for the first time from the A. falcata extract. The novel compound 1 and known compounds, such as 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene (5), agrostonin (7), and syringaresinol (9), showed potential activity in CNS-associated disease models. Notably, compounds 1, 5, 7, and 9 demonstrated the ability to alleviate LPS-induced NO release in BV-2 microglial cells, with IC50 values of 0.9, 2.5, 2.6, and 1.4 µM, respectively. These compounds also significantly inhibited the release of pro-inflammatory cytokines, IL-6 and TNF-α, reflecting their potential anti-neuroinflammatory effects. Additionally, compounds 1, 7, and 9 were found to reduce cell growth and migration of glioblastoma and neuroblastoma cells, indicating their potential use as anticancer agents in the CNS. In summary, the bioactive agents isolated from the A. falcata extract offer plausible therapeutic options for CNS diseases.

4.
J Tradit Complement Med ; 13(1): 81-92, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685077

RESUMEN

Background: Clerodendrum petasites, an herbal plant in Thailand, has been used for many years in folk medicine. However, scientific evidence regarding CNS safety pharmacology and antinociceptive activity of C. petasites (CP) has not yet been well characterized. Purpose: The present study aimed to assess the CNS safety pharmacology and antinociceptive and antiinflammatory effects of CP extract. Methods: The effect of CP extract on CNS safety pharmacology was assessed using LABORAS automated home cage monitoring and rotarod test. Its pharmacological activity was evaluated both in-vitro, and in-vivo using hot-plate, acetic acid-induced writhing, formalin, and carrageenan-induced paw edema models. Results and conclusion: CP extract significantly improved thermal and chemical nociceptive behaviors and acute inflammatory pain at all doses: 300, 600, and 1200 mg/kg, p.o. The antiinflammatory effect of CP extract in inflammatory pain models was comparable to the effect of positive control: indomethacin 10 mg/kg at all dose levels tested. Further, the CP extract at 600 mg/kg dose significantly inhibited 82.3% of carrageenan-induced total edema. In-vitro, CP extract at 12.5, 25, and 50 µg/mL concentrations significantly reduced the expression of LPS-induced nitric oxide, IL-6, and TNF-α expression in both RAW 264.7 macrophage and BV-2 microglial cell lines. In addition, CP extract did not show any potential effects on the CNS, indicated by no significant effects on motor coordination, spontaneous locomotor activity, general behaviors, and well-being compared to vehicle-treated mice (p > 0.05). Overall, the present study evidences the potential antinociceptive, antiinflammatory efficacies of CP extract with a favorable CNS safety profile.

5.
ACS Pharmacol Transl Sci ; 5(9): 774-790, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36110378

RESUMEN

Curcumin is a naturally occurring polyphenol compound with potential analgesic effects. It has been shown to improve pain-like behaviors in numerous models of pain. Despite its potential, curcumin exhibits poor physicochemical and pharmacokinetic properties, which hinder its oral therapeutic efficacy. Curcumin diethyl γ-aminobutyrate (CUR-2GE), a carbamate prodrug of curcumin, was designed to overcome these limitations and demonstrated greater anti-neuroinflammatory effects compared to curcumin in vitro. Thus, this study evaluated the effect of CUR-2GE and its parent compound on pain-like behaviors in carrageenan- and LPS-induced mouse models. The possible side effects of CUR-2GE were also assessed by exploring its effects on motor coordination and spontaneous locomotor activity after acute and chronic treatments. The results showed that CUR-2GE improved mechanical and thermal hyperalgesia and locomotor activity to a greater extent than curcumin in carrageenan-induced mice. These results are in line with the ability of CUR-2GE to suppress peripheral inflammation in the paw tissue of carrageenan-induced mice, indicated by a significant decrease in TNF-α and IL-6 expression levels. Similarly, in LPS-induced mice, CUR-2GE improved sickness and pain-like behaviors (exploratory behaviors and long-term locomotor activity) to a greater extent than curcumin. Furthermore, CUR-2GE significantly reduced the level of proinflammatory cytokines in both the plasma and spinal cord tissue of LPS-induced mice, exhibiting significantly higher inhibition than curcumin. Moreover, the motor coordination, and locomotive behaviors of mice were not affected by both acute and chronic administration of CUR-2GE, indicating no potential CNS side effects. Thus, CUR-2GE demonstrated enhanced therapeutic efficacy in mouse models of inflammatory pain without any possible CNS side effects, suggesting its potential to be developed as an analgesic agent against inflammatory pain.

6.
Sci Rep ; 12(1): 9713, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690654

RESUMEN

Metformin is a well-tolerated antidiabetic drug and has recently been repurposed for numerous diseases, including pain. However, a higher dose of metformin is required for effective analgesia, which can potentiate its dose-dependent gastrointestinal side effects. Curcumin is a natural polyphenol and has beneficial therapeutic effects on pain. Curcumin has been used as an analgesic adjuvant with several analgesic drugs, allowing synergistic antinociceptive effects. Nevertheless, whether curcumin can exert synergistic analgesia with metformin is still unknown. In the present study, the nature of curcumin-metformin anti-inflammatory interaction was evaluated in in vitro using lipopolysaccharide-induced RAW 264.7 macrophage and BV-2 microglia cells. In both macrophage and microglia, curcumin effectively potentiates the anti-inflammatory effects of metformin, indicating potential synergistic effects in both peripheral and central pathways of pain. The nature of the interaction between curcumin and metformin was further recapitulated using a mouse model of formalin-induced pain. Coadministration of curcumin and metformin at a 1:1 fixed ratio of their ED50 doses significantly reduced the dose required to produce a 50% effect compared to the theoretically required dose in phase II of the formalin test with a combination index value of 0.24. Besides, the synergistic interaction does not appear to involve severe CNS side effects indicated by no motor alterations, no alterations in short-term and long-term locomotive behaviors, and the general well-being of mice. Our findings suggest that curcumin exerts synergistic anti-inflammation with metformin with no potential CNS adverse effects.


Asunto(s)
Curcumina , Metformina , Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Metformina/uso terapéutico , Dolor/tratamiento farmacológico
7.
J Ethnopharmacol ; 290: 115088, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35149131

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ben-Cha-Moon-Yai (BMY) remedy used in Thai traditional medicine as an anti-inflammatory, analgesic, and antipyretic agent compromises five herbal root extracts of equal weights: Aegle marmelos (L.) Corrêa (AM), Oroxylum indicum (L.) Kurz (OI), Dimocarpus longan Lour. (DL), Dolichandrone serrulata (Wall. ex DC.) Seem. (DS), and Walsura trichostemon Miq. (WT). AIM OF THE STUDY: To assess the anti-nociceptive and anti-inflammatory effects of the root extracts of all five species of BMY in experimental animal (mouse) models to ensure the rational use of herbal products in Thai traditional medicine. MATERIALS AND METHODS: Root extracts prepared by ethanol and water extraction were used for the biological assays in animal models at five dose levels: 25, 50,100,200 & 400 mg/kg. The anti-nociceptive activity was evaluated based on hot-plate latency, duration of paw licking induced by formalin, and abdominal writhing induced by acetic acid. Carrageenan- and prostaglandin-induced paw oedema models were used to determine the anti-inflammatory activity. RESULTS: The oral administration of AM, DS and WT root extracts displayed significant analgesic effects in the hot-plate test, both phases (early and late) of formalin test and acetic-acid induced writhing test at different dose levels. OI and DL only produced significant analgesia in the late phase of the formalin test and writhing test. The pretreatment of animals with the non-selective opioid receptor antagonist naloxone, reverse AM, DS and WT induced-antinociceptive activity. In both carrageenan and prostaglandin-induced paw oedema tests, all five herbal plant root extracts significantly reduced paw oedema at 3 h or more at different dose levels. Rotarod test results showed no effects of five herbal plant root extracts on the balance and the motor coordination at the highest dose level evaluated (400 mg/kg). CONCLUSION: The root extracts of AM, DS, and WT possess both central and peripheral anti-nociceptive properties, while OI and DL possess only peripheral analgesic properties. All five root extracts own anti-inflammatory properties, which might be due to their activity on the prostaglandin system. Altogether these findings ensure the rational use of BMY remedy in Thai traditional medicine.


Asunto(s)
Antiinflamatorios/farmacología , Nocicepción/efectos de los fármacos , Péptidos Opioides/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas , Prostaglandinas/metabolismo , Aegle , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Indometacina/farmacología , Masculino , Medicina Tradicional de Asia Oriental , Ratones , Ratones Endogámicos ICR , Morfina/farmacología , Naloxona/farmacología , Dimensión del Dolor , Preparaciones de Plantas/farmacología , Sapindaceae
8.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34451874

RESUMEN

Chronic pain is a persistent and unremitting condition that has immense effects on patients' quality of life. Studies have shown that neuroinflammation is associated with the induction and progression of chronic pain. The activation of microglia and astrocytes is the major hallmark of spinal neuroinflammation leading to neuronal excitability in the projection neurons. Excessive activation of microglia and astrocytes is one of the major contributing factors to the exacerbation of pain. However, the current chronic pain treatments, mainly by targeting the neuronal cells, remain ineffective and unable to meet the patients' needs. Curcumin, a natural plant product found in the Curcuma genus, improves chronic pain by diminishing the release of inflammatory mediators from the spinal glia. This review details the role of curcumin in microglia and astrocytes both in vitro and in vivo and how it improves pain. We also describe the mechanism of curcumin by highlighting the major glia-mediated cascades in pain. Moreover, the role of curcumin on inflammasome and epigenetic regulation is discussed. Furthermore, we discuss the strategies used to improve the efficacy of curcumin. This review illustrates that curcumin modulating microglia and astrocytes could assure the treatment of chronic pain by suppressing spinal neuroinflammation.

9.
PLoS One ; 16(8): e0256706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34449819

RESUMEN

The use of endotoxin, such as lipopolysaccharide (LPS) as a model of sickness behavior, has attracted recent attention. To objectively investigate sickness behavior along with its pain-like behaviors in LPS-treated mice, the behavioral measurement requires accurate methods, which reflects clinical relevance. While reflexive pain response tests have been used for decades for pain assessment, its accuracy and clinical relevance remain problematic. Hence, we used automated home-cage monitoring LABORAS to evaluate spontaneous locomotive behaviors in LPS-induced mice. LPS-treated mice displayed sickness behaviors including pain-like behaviors in automated home-cage monitoring characterized by decreased mobile behaviors (climbing, locomotion, rearing) and increased immobility compared to that of the control group in both short- and long-term locomotive assessments. Here, in short-term measurement, both in the open-field test and automated home-cage monitoring, mice demonstrated impaired locomotive behaviors. We also assessed 24 h long-term locomotor activity in the home-cage system, which profiled the diurnal behaviors of LPS-stimulated mice. The results demonstrated significant behavioral impairment in LPS-stimulated mice compared to the control mice in both light and dark phases. However, the difference is more evident in the dark phase compared to the light phase owing to the nocturnal activity of mice. In addition, the administration of indomethacin as a pharmacological intervention improved sickness behaviors in the open-field test as well as automated home-cage monitoring, confirming that automated home-cage monitoring could be potentially useful in pharmacological screening. Together, our results demonstrate that automated home-cage monitoring could be a feasible alternative to conventional methods, such as the open-field test and combining several behavioral assessments may provide a better understanding of sickness behavior and pain-like behaviors in LPS-treated mice.


Asunto(s)
Ansiedad/diagnóstico , Conducta de Enfermedad/fisiología , Monitoreo Fisiológico , Dolor/diagnóstico , Animales , Ansiedad/diagnóstico por imagen , Ansiedad/fisiopatología , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Humanos , Conducta de Enfermedad/efectos de los fármacos , Lipopolisacáridos/toxicidad , Locomoción/fisiología , Ratones , Actividad Motora/fisiología , Dolor/diagnóstico por imagen , Dolor/fisiopatología , Dimensión del Dolor/métodos
10.
Eur J Pharmacol ; 899: 174008, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33705800

RESUMEN

Neuropathic pain is a debilitating chronic pain condition, and its treatment remains a clinical challenge. Curcumin, a naturally occurring phenolic compound, possesses diverse biological and pharmacological effects but has not yet been approved as a drug due to its low bioavailability. In order to overcome this limitation, we synthesized a potential ester prodrug of curcumin, curcumin diethyl diglutarate (CurDDG). In this study, we evaluated the pharmacological advantages of CurDDG over curcumin in a mouse model of chronic constriction injury (CCI), and the anti-inflammatory effect of CurDDG in LPS-induced RAW 264.7 macrophage cells was accessed to clarify the underline mechanism. Mice were treated with various oral doses of curcumin (25, 50, 100 and 200 mg/kg/day, daily for 14 days) or equimolar doses of CurDDG. CurDDG at all doses tested significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia compared with the CCI-control group. CurDDG at 25, 50 and 100 mg/kg demonstrated significantly greater efficacy on both mechanical and thermal hypersensitivities compared to that of curcumin. The effect of CurDDG correlated well with the inhibition of TNF-α and IL-6 levels in both the sciatic nerve and the spinal cord, as compared to its respective control groups. Similarly, in the in vitro study, CurDDG significantly reduced the LPS-induced expression of TNF-α and IL-6. Moreover, CurDDG significantly decreased COX-2 and iNOS levels and attenuated p38, JNK, and ERK1/2 phosphorylation as compared to the curcumin-treated cells. Altogether, this study demonstrated the improved pharmacological effects of curcumin by its diglutarate conjugate, CurDDG.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Glutaratos/farmacología , Hiperalgesia/prevención & control , Umbral del Dolor/efectos de los fármacos , Profármacos/farmacología , Nervio Ciático/efectos de los fármacos , Ciática/prevención & control , Médula Espinal/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación , Células RAW 264.7 , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Ciática/metabolismo , Ciática/fisiopatología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Succinatos , Factor de Necrosis Tumoral alfa/metabolismo
11.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867013

RESUMEN

The drug treatment for neuropathic pain remains a challenge due to poor efficacy and patient satisfaction. Curcumin has been reported to alleviate neuropathic pain, but its clinical application is hindered by its low solubility and poor oral bioavailability. Curcumin diglutaric acid (CurDG) is a curcumin prodrug with improved water solubility and in vivo antinociceptive effects. In this study, we investigated the anti-inflammatory mechanisms underlying the analgesic effect of CurDG in the chronic constriction injury (CCI)-induced neuropathy mouse model. Repeated oral administration of CurDG at a low dose equivalent to 25 mg/kg/day produced a significant analgesic effect in this model, both anti-allodynic activity and anti-hyperalgesic activity appearing at day 3 and persisting until day 14 post-CCI surgery (p < 0.001) while having no significant effect on the motor performance. Moreover, the repeated administration of CurDG diminished the increased levels of the pro-inflammatory cytokines: TNF-α and IL-6 in the sciatic nerve and the spinal cord at the lowest tested dose (equimolar to 25 mg/kg curcumin). This study provided pre-clinical evidence to substantiate the potential of pursuing the development of CurDG as an analgesic agent for the treatment of neuropathic pain.

12.
Molecules ; 25(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933086

RESUMEN

Analgesic drugs in a combination-form can achieve greater efficacy with lesser side effects compared to either drug alone. The combination of drugs acting at different targets or mechanisms of action has been recognized as an alternative approach for achieving optimal analgesia. In this study, the analgesic effects of pregabalin (30, 60, 100, 200 mg/kg), curcumin (15, 30, 60, 100, 120 mg/kg), and 1:1 fixed-dose ratio of the pregabalin-curcumin combination were assessed using two acute nociceptive pain models, the acetic acid-induced writhing and tail-flick tests in mice. The pregabalin-curcumin combination produced a dose-dependent decrease in mean of writhes and an increase in the percentage of antinociception by the acetic acid-induced writhing test. In the tail-flick test, the combination also showed an improvement in antinociception indicated by the tail-flick latency, % antinociception, and area under the curve (AUC). Isobolographic analysis of interactions demonstrated a significant synergistic interaction effect between pregabalin and curcumin in both acute nociceptive pain models with the experimental ED50 below the predicted additive line and the combination index < 1. These findings demonstrate that the combination of pregabalin and curcumin exhibits a synergistic interaction in mouse models of acute nociceptive pain.


Asunto(s)
Analgésicos/administración & dosificación , Curcumina/administración & dosificación , Nocicepción/efectos de los fármacos , Pregabalina/administración & dosificación , Ácido Acético/química , Administración Oral , Animales , Área Bajo la Curva , Conducta , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Ratones , Ratones Endogámicos ICR , Manejo del Dolor , Dimensión del Dolor
13.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784830

RESUMEN

Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/farmacología , Curcumina/farmacología , Ésteres/farmacología , Profármacos/farmacología , Animales , Antiinflamatorios/química , Carragenina , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Citocinas/metabolismo , Edema/inducido químicamente , Edema/metabolismo , Edema/prevención & control , Miembro Posterior , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Profármacos/química , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...