Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(1): 32, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062305

RESUMEN

Investigation of an antimicrobial and cytotoxic ethyl acetate extract prepared from solid fermentation of the marine-derived fungus Penicillium citrinum VM6 led to the isolation of eight metabolites (1-8), including one citrinin dimer dicitrinone F (1). Of these, compound 7 was isolated for the first time from the Penicillium genus and compound 1 with carbon-bridged C-7/C-7' linkage is rarely reported. All compounds (1-8) exhibited selective antimicrobial activity against the tested Gram-positive bacteria and Candida albicans with MICs of 32-256 µg/mL. Compounds 1 and 8 exhibited cytotoxicity against all tested cell lines A549, MCF7, MDA-MB-231, Hela, and AGS with IC50 values of 6.7 ± 0.2 to 29.6 ± 2.2 µg/mL, whereas compound 5 had selective cytotoxicity against the MCF7 cell lines with IC50 of 98.1 ± 7.8 µg/mL.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Penicillium , Penicillium/metabolismo , Antineoplásicos/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Hongos , Estructura Molecular
2.
J Biomol Struct Dyn ; : 1-17, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37997953

RESUMEN

Cordyceps militaris has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (1-14) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against α-amylase (IC50 = 6.443 ± 0.364 mg.mL-1) and α-glucosidase (IC50 = 2.580 ± 0.194 mg.mL-1). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. 1 (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; DS¯ -12.3 kcal.mol-1; polarizability 34.7 Å3; logP - 1.30), 10 (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; DS¯ -12.6 kcal.mol-1; polarizability 24.9 Å3; logP - 3.39), and 12 (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; DS¯ -12.5 kcal.mol-1; polarizability 52.4 Å3; logP - 4.39). The results encourage further experimental tests on cordycepin (1), mannitol (10), and adenosylribose (12) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.

3.
3 Biotech ; 13(9): 292, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37547918

RESUMEN

Laboratory experiments were carried out to identify the chemical composition of Cordyceps militaris and reveal the first evidence of their Alzheimer-related potential. Liquid chromatography-mass spectrometry analysis identified 21 bioactive compounds in the ethanol extract (1-21). High-performance liquid chromatography quantified the content of cordycepin (0.32%). Bioassays revealed the overall anti-Alzheimer potential of the extract against acetylcholinesterase (IC50 = 115.9 ± 11.16 µg mL-1). Multi-platform computations were utilized to predict the biological inhibitory effects of its phytochemical components against Alzheimer-related protein structures: acetylcholinesterase (PDB-4EY7) and ß-amyloid protein (PDB-2LMN). In particular, 7 is considered as a most effective inhibitor predicted by its chemical stability in dipole-based environments (ground state - 467.26302 a.u.; dipole moment 11.598 Debye), inhibitory effectiveness (DS¯ - 13.6 kcal mol-1), polarized compatibility (polarizability 25.8 Å3; logP - 1.01), and brain penetrability (logBB - 0.244; logPS - 3.047). Besides, 3 is promising as a brain-penetrating agent (logBB - 0.257; logPS - 2.400). The results preliminarily suggest further experimental attempts to verify the pro-cognitive effects of l(-)-carnitine (7). Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03714-9.

4.
Front Microbiol ; 13: 923432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033897

RESUMEN

We studied the succession of bacterial communities during the biodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The communities originated from a mesocosm with soil from Bien Hoa airbase in Vietnam heavily contaminated with herbicides and dioxins. They were grown in defined media with different carbon and Gibbs energy sources and 2,3,7,8-TCDD. Cultures with dimethyl sulfoxide (DMSO) as the sole carbon and energy source degraded about 95% of 2,3,7,8-TCDD within 60 days of cultivation. Those with an additional 1 mM of vanillin did that in roughly 90 days. Further 16S rRNA gene amplicon sequencing showed that the increase in relative abundance of members belonging to the genera Bordetella, Sphingomonas, Proteiniphilum, and Rhizobium correlated to increased biodegradation of 2,3,7,8-TCDD in these cultures. A higher concentration of vanillin slowed down the biodegradation rate. Addition of alternative carbon and Gibbs energy sources, such as amino acids, sodium lactate and sodium acetate, even stopped the degradation of 2,3,7,8-TCDD completely. Bacteria from the genera Bordetella, Achromobacter, Sphingomonas and Pseudomonas dominated most of the cultures, but the microbial profiles also significantly differed between cultures as judged by non-metric multidimensional scaling (NMDS) analyses. Our study indicates that 2,3,7,8-TCDD degradation may be stimulated by bacterial communities preadapted to a certain degree of starvation with respect to the carbon and energy source. It also reveals the succession and abundance of defined bacterial genera in the degradation process.

5.
Nat Prod Res ; 36(19): 4892-4897, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33813958

RESUMEN

A new steroidal saponin, torvoside R (1), was isolated along with torvoside Q (2) and macaoside (3) from dichloromethane soluble-portion of the aerial parts of Solanum torvum. Their chemical structures were elucidated using HRESIMS, 1 D- and 2 D-NMR as well as comparison with those reported in the literature. All isolated compounds (1 - 3) exhibited cytotoxicity against SK-LU-1, HepG2, MCF-7, and T24 cancer cell lines with IC50 values ranging from 14.18 to 89.31 µg/mL.


Asunto(s)
Saponinas , Solanum , Cloruro de Metileno , Estructura Molecular , Componentes Aéreos de las Plantas , Saponinas/química , Saponinas/farmacología , Solanum/química , Esteroides/química , Esteroides/farmacología
6.
Mar Drugs ; 21(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36662202

RESUMEN

Recent reviews have reinforced sponge-associated bacteria as a valuable source of structurally diverse secondary metabolites with potent biological properties, which makes these microbial communities promising sources of new drug candidates. However, the overall diversity of secondary metabolite biosynthetic potential present in bacteria is difficult to access due to the fact that the majority of bacteria are not readily cultured in the laboratory. Thus, use of cultivation-independent approaches may allow accessing "silent" and "cryptic" secondary metabolite biosynthetic gene clusters present in bacteria that cannot yet be cultured. In the present study, we investigated the diversity of secondary metabolite biosynthetic gene clusters (BGCs) in metagenomes of bacterial communities associated with three sponge species: Clathria reinwardti, Rhabdastrella globostellata, and Spheciospongia sp. The results reveal that the three metagenomes contain a high number of predicted BGCs, ranging from 282 to 463 BGCs per metagenome. The types of BGCs were diverse and represented 12 different cluster types. Clusters predicted to encode fatty acid synthases and polyketide synthases (PKS) were the most dominant BGC types, followed by clusters encoding synthesis of terpenes and bacteriocins. Based on BGC sequence similarity analysis, 363 gene cluster families (GCFs) were identified. Interestingly, no GCFs were assigned to pathways responsible for the production of known compounds, implying that the clusters detected might be responsible for production of several novel compounds. The KS gene sequences from PKS clusters were used to predict the taxonomic origin of the clusters involved. The KS sequences were related to 12 bacterial phyla with Actinobacteria, Proteobacteria, and Firmicutes as the most predominant. At the genus level, the KSs were most related to those found in the genera Mycolicibacterium, Mycobacterium, Burkholderia, and Streptomyces. Phylogenetic analysis of KS sequences resulted in detection of two known 'sponge-specific' BGCs, i.e., SupA and SwfA, as well as a new 'sponge-specific' cluster related to fatty acid synthesis in the phylum Candidatus Poribacteria and composed only by KS sequences of the three sponge-associated bacterial communities assessed here.


Asunto(s)
Actinobacteria , Poríferos , Actinobacteria/genética , Bacterias/genética , Vías Biosintéticas/genética , Familia de Multigenes/genética , Filogenia , Poríferos/microbiología , Animales
7.
Front Microbiol ; 12: 737925, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867854

RESUMEN

The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.

8.
Antibiotics (Basel) ; 10(12)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34943703

RESUMEN

Mangrove plant endophytic bacteria are prolific sources of bioactive secondary metabolites. In the present study, twenty-three endophytic bacteria were isolated from the fresh roots of the mangrove plant Rhizophora apiculata. The identification of isolates by 16S rRNA gene sequences revealed that the isolated endophytic bacteria belonged to nine genera, including Streptomyces, Bacillus, Pseudovibrio, Microbacterium, Brevibacterium, Microbulbifer, Micrococcus, Rossellomorea, and Paracoccus. The ethyl acetate extracts of the endophytic bacteria's pharmacological properties were evaluated in vitro, including antimicrobial, antioxidant, α-amylase and α-glucosidase inhibitory, xanthine oxidase inhibitory, and cytotoxic activities. Gas chromatography-mass spectrometry (GC-MS) analyses of three high bioactive strains Bacillus sp. RAR_GA_16, Rossellomorea vietnamensis RAR_WA_32, and Bacillus sp. RAR_M1_44 identified major volatile organic compounds (VOCs) in their ethyl acetate extracts. Genome analyses identified biosynthesis gene clusters (BGCs) of secondary metabolites of the bacterial endophytes. The obtained results reveal that the endophytic bacteria from R. apiculata may be a potential source of pharmacological secondary metabolites, and further investigations of the high bioactive strains-such as fermentation and isolation of pure bioactive compounds, and heterologous expression of novel BGCs in appropriate expression hosts-may allow exploring and exploiting the promising bioactive compounds for future drug development.

9.
Mar Drugs ; 19(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206202

RESUMEN

This study aimed to assess the diversity and antimicrobial activity of cultivable bacteria associated with Vietnamese sponges. In total, 460 bacterial isolates were obtained from 18 marine sponges. Of these, 58.3% belonged to Proteobacteria, 16.5% to Actinobacteria, 18.0% to Firmicutes, and 7.2% to Bacteroidetes. At the genus level, isolated strains belonged to 55 genera, of which several genera, such as Bacillus, Pseudovibrio, Ruegeria, Vibrio, and Streptomyces, were the most predominant. Culture media influenced the cultivable bacterial composition, whereas, from different sponge species, similar cultivable bacteria were recovered. Interestingly, there was little overlap of bacterial composition associated with sponges when the taxa isolated were compared to cultivation-independent data. Subsequent antimicrobial assays showed that 90 isolated strains exhibited antimicrobial activity against at least one of seven indicator microorganisms. From the culture broth of the isolated strain with the strongest activity (Bacillus sp. M1_CRV_171), four secondary metabolites were isolated and identified, including cyclo(L-Pro-L-Tyr) (1), macrolactin A (2), macrolactin H (3), and 15,17-epoxy-16-hydroxy macrolactin A (4). Of these, compounds 2-4 exhibited antimicrobial activity against a broad spectrum of reference microorganisms.


Asunto(s)
Antibacterianos/farmacología , Bacillus/aislamiento & purificación , Poríferos/microbiología , Animales , Organismos Acuáticos , Bacillus/genética , Fitoterapia , Vietnam
10.
Nat Prod Res ; 35(5): 873-879, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31204853

RESUMEN

Using various chromatographic separations, four compounds, including one new steroid saponin named vernoamyoside E (1), were isolated from the leaves of the Vietnamese medicinal plant Vernonia amygdalina Delile (Asteraceae). Their structures were established by spectroscopic methods such as 1D- and 2D-NMR, HR-ESI-MS, and HPLC analysis. The inhibitory activities against α-glucosidase and α-amylase of the isolated compounds from V. amygdalina were reported for the first time. The results indicated that compound 1 significantly inhibited both against α-amylase and α-glucosidase activity.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hojas de la Planta/química , Saponinas/farmacología , Esteroides/farmacología , Vernonia/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Saponinas/química , Esteroides/química , alfa-Amilasas/metabolismo
11.
Mar Drugs ; 17(8)2019 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405226

RESUMEN

Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.


Asunto(s)
Antozoos/química , Antozoos/microbiología , Organismos Acuáticos/química , Factores Biológicos/química , Factores Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Animales , Humanos
12.
PeerJ ; 6: e4970, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29900079

RESUMEN

Sponge-associated prokaryotic diversity has been studied from a wide range of marine environments across the globe. However, for certain regions, e.g., Vietnam, Thailand, Cambodia, and Singapore, an overview of the sponge-associated prokaryotic communities is still pending. In this study we characterized the prokaryotic communities from 27 specimens, comprising 18 marine sponge species, sampled from the central coastal region of Vietnam. Illumina MiSeq sequencing of 16S ribosomal RNA (rRNA) gene fragments was used to investigate sponge-associated bacterial and archaeal diversity. Overall, 14 bacterial phyla and one archaeal phylum were identified among all 27 samples. The phylum Proteobacteria was present in all sponges and the most prevalent phylum in 15 out of 18 sponge species, albeit with pronounced differences at the class level. In contrast, Chloroflexi was the most abundant phylum in Halichondria sp., whereas Spirastrella sp. and Dactylospongia sp. were dominated by Actinobacteria. Several bacterial phyla such as Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Gemmatimonadetes, and Nitrospirae were found in two-thirds of the sponge species. Moreover, the phylum Thaumarchaeota (Archaea), which is known to comprise nitrifying archaea, was highly abundant among the majority of the 18 investigated sponge species. Altogether, this study demonstrates that the diversity of prokaryotic communities associated with Vietnamese sponges is comparable to sponge-prokaryotic assemblages from well-documented regions. Furthermore, the phylogenetically divergent sponges hosted species-specific prokaryotic communities, thus demonstrating the influence of host identity on the composition and diversity of the associated communities. Therefore, this high-throughput 16S rRNA gene amplicon analysis of Vietnamese sponge-prokaryotic communities provides a foundation for future studies on sponge symbiont function and sponge-derived bioactive compounds from this region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...