Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 13(4): 1421-1442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923534

RESUMEN

The transcription factor p53 is an important regulator of a multitude of cellular processes. In the presence of genotoxic stress, p53 is activated to facilitate DNA repair, cell cycle arrest, and apoptosis. In breast cancer, the tumor suppressive activities of p53 are frequently inactivated by either the overexpression of its negative regulator MDM2, or mutation which is present in 30-35% of all breast cancer cases. Notably, the frequency of p53 mutation is highly subtype dependent in breast cancers, with majority of hormone receptor-positive or luminal subtypes retaining the wild-type p53 status while hormone receptor-negative patients predominantly carry p53 mutations with gain-of-function oncogenic activities that contribute to poorer prognosis. Thus, a two-pronged strategy of targeting wild-type and mutant p53 in different subtypes of breast cancer can have clinical relevance. The development of p53-based therapies has rapidly progressed in recent years, and include unique small molecule chemical inhibitors, stapled peptides, PROTACs, as well as several genetic-based approaches using vectors and engineered antibodies. In this review, we highlight the therapeutic strategies that are in pre-clinical and clinical development to overcome p53 inactivation in both wild-type and mutant p53-bearing breast tumors, and discuss their efficacies and limitations in pre-clinical and clinical settings.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mama/patología , Mutación , Puntos de Control del Ciclo Celular/genética
2.
Cancers (Basel) ; 14(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406424

RESUMEN

The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.

3.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919917

RESUMEN

In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.

4.
Oncotarget ; 7(18): 25391-407, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27058427

RESUMEN

In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.


Asunto(s)
Carcinoma/patología , Gelsolina/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Transducción de Señal/fisiología , Neoplasias Gástricas/patología , Antígenos CD , Cadherinas/metabolismo , Carcinoma/metabolismo , Humanos , Invasividad Neoplásica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
5.
Cell Oncol (Dordr) ; 39(2): 175-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26868260

RESUMEN

BACKGROUND: Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS: Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS: Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS: From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Antígenos de Neoplasias/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Docetaxel , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Estrés Fisiológico/efectos de los fármacos , Análisis de Supervivencia , Taxoides/farmacología , Ensayo de Tumor de Célula Madre
6.
Biol Rev Camb Philos Soc ; 91(2): 409-28, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25631495

RESUMEN

A large number of etiological factors and the complexity of breast cancers present challenges for prevention and treatment. Recently, the emergence of microRNAs (miRNAs) as cancer biomarkers has added an extra dimension to the 'molecular signatures' of breast cancer. Bioinformatic analyses indicate that each miRNA can regulate hundreds of target genes and could serve functionally as 'oncogenes' or 'tumour suppressor' genes, and co-ordinate multiple cellular processes relevant to cancer progression. A number of studies have shown that miRNAs play important roles in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer cells. This review provides a comprehensive overview of miRNAs with established functional relevance in breast cancer, their established target genes and resulting cellular phenotype. The role and application of circulating miRNAs in breast cancer is also discussed. Furthermore, we summarize the role of miRNAs in the hallmarks of breast cancer, as well as the possibility of using miRNAs as potential biomarkers for detection of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , MicroARNs/metabolismo , Biomarcadores de Tumor , Femenino , Humanos , MicroARNs/genética
7.
Oncotarget ; 5(15): 5920-33, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25153718

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones SCID , Transfección , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/genética
8.
Clin Transl Gastroenterol ; 5: e51, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24572701

RESUMEN

OBJECTIVES: Sphingosine kinase 1 (SphK1) phosphorylates the membrane sphingolipid, sphingosine, to sphingosine-1-phosphate (S1P), an oncogenic mediator, which drives tumor cell growth and survival. Although SphK1 has gained increasing prominence as an oncogenic determinant in several cancers, its potential as a therapeutic target in colon cancer remains uncertain. We investigated the clinical relevance of SphK1 expression in colon cancer as well as its inhibitory effects in vitro. METHODS: SphK1 expression in human colon tumor tissues was determined by immunohistochemistry and its clinicopathological significance was ascertained in 303 colon cancer cases. The effects of SphK1 inhibition on colon cancer cell viability and the phosphoinositide 3-kinase (PI3K)/Akt cell survival pathway were investigated using a SphK1-selective inhibitor-compound 5c (5c). The cytotoxicity of a novel combination using SphK1 inhibition with the chemotherapeutic drug, 5-fluorouracil (5-FU), was also determined. RESULTS: High SphK1 expression correlated with advanced tumor stages (AJCC classification). Using a competing risk analysis model to take into account disease recurrence, we found that SphK1 is a significant independent predictor for mortality in colon cancer patients. In vitro, the inhibition of SphK1 induced cell death in colon cancer cell lines and attenuated the serum-dependent PI3K/Akt signaling. Inhibition of SphK1 also enhanced the sensitivity of colon cancer cells to 5-FU. CONCLUSION: Our findings highlight the impact of SphK1 in colon cancer progression and patient survival, and provide evidence supportive of further development in combination strategies that incorporate SphK1 inhibition with current chemotherapeutic agents to improve colon cancer outcomes.

9.
J Clin Invest ; 119(8): 2171-83, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620787

RESUMEN

Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Genes ras , Proteínas de la Membrana/genética , Oncogenes , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Biología Computacional , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Genes erbB-2 , Humanos , Inmunohistoquímica , Proteínas de la Membrana/análisis , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Fosforilación , Interferencia de ARN , Proteínas de Unión al GTP rab/fisiología
10.
J Immunol ; 173(3): 1663-70, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15265895

RESUMEN

The type I IFN family includes 14 closely related antiviral cytokines that are produced in response to viral infections. They bind to a common receptor, and have qualitatively similar biological activities. The physiological relevance of this redundancy is still unclear. In this study, we analyzed and compared the effects of two potent antiviral type I IFNs, IFN-alpha 2 and IFN-alpha 8, on the motility of various populations of human T lymphocytes in vitro. In this study, we show that IFN-alpha 2 induces chemokinesis of both CD4(+) and CD8(+) T cells at various stages of differentiation, and induces functional changes that result in enhanced T cell motility, including up-regulation of the integrins LFA-1 and VLA-4, and subsequently, increased ICAM-1- and fibronectin-dependent migration. In contrast, IFN-alpha 8 did not affect T cell motility, despite having similar antiviral properties and similar effects on the induction of the antiviral protein MxA. However, transcription of other IFN-stimulated genes showed that transcription of these genes is selectively activated by IFN-alpha 2, but not IFN-alpha 8, in T cells. Finally, while the antiviral activity of the two subtypes is inhibited by Abs against the two subunits of the IFN-alpha receptor, the chemokinetic effect of IFN-alpha 2 is selectively blocked by Abs against the A1 receptor subunit. These observations are consistent with the possibility that subtype-specific intracellular signaling pathways are activated by type I IFNs in T lymphocytes.


Asunto(s)
Antivirales/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Interferón-alfa/farmacología , Interferones/farmacología , Subgrupos de Linfocitos T/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Diferenciación Celular , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , Quimiocina CXCL12 , Quimiocinas CXC/farmacología , Fibronectinas/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Integrina alfa4beta1/biosíntesis , Integrina alfa4beta1/genética , Molécula 1 de Adhesión Intercelular/fisiología , Interferón alfa-2 , Antígeno-1 Asociado a Función de Linfocito/biosíntesis , Antígeno-1 Asociado a Función de Linfocito/genética , Subunidades de Proteína , Receptor de Interferón alfa y beta , Receptores de Interferón/antagonistas & inhibidores , Receptores de Interferón/química , Proteínas Recombinantes , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/citología , Transcripción Genética/efectos de los fármacos
11.
Blood ; 102(6): 2173-9, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12775572

RESUMEN

Due to their ability to inhibit antigen-induced T-cell activation in vitro and in vivo, anergic T cells can be considered part of the spectrum of immunoregulatory T lymphocytes. Here we report that both murine and human anergic T cells can impair the ability of parenchymal cells (including endothelial and epithelial cells) to establish cell-cell interactions necessary to sustain leukocyte migration in vitro and tissue infiltration in vivo. The inhibition is reversible and cell-contact dependent but does not require cognate recognition of the parenchymal cells to occur. Instrumental to this effect is the increased cell surface expression and enzymatic activity of molecules such as CD26 (dipeptidyl-peptidase IV), which may act by metabolizing chemoattractants bound to the endothelial/epithelial cell surface. These results describe a previously unknown antigen-independent anti-inflammatory activity by locally generated anergic T cells and define a novel mechanism for the long-known immunoregulatory properties of these cells.


Asunto(s)
Comunicación Celular/inmunología , Quimiocinas/metabolismo , Anergia Clonal/inmunología , Linfocitos T , Animales , Dipeptidil Peptidasa 4/metabolismo , Endotelio/citología , Endotelio/inmunología , Femenino , Humanos , Túbulos Renales/citología , Túbulos Renales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...