Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Biol Macromol ; 262(Pt 2): 129981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336316

RESUMEN

The interchange of DNA sequences between genes may occur because of chromosomal rearrangements leading to the formation of chimeric genes. These chimeric genes have been linked to various cancers, accumulated significant interest in recent times. We used paired-end RNA-seq. data of four CRC and one normal sample generated from our previous study. The STAR-Fusion pipeline was utilized to identify the fusion genes unique to CRC. The in-silico identified fusion gene(s) were explored for their diagnostic, prognostic and therapeutic biomarker potential using TCGA-datasets, then validated through PCR and DNA sequencing. Further, cell line-based studies were performed to gain functional insights of the novel fusion transcript CTNND1-RAB6A, which was amplified in one sample. Sequencing revealed that there was a total loss of the CTNND1 gene, whereas RAB6A retained its coding sequence. Further, RAB6A was functionally characterized for its oncogenic potential in HCT116 cell line. RAB6A under-expression was found to be significantly associated with increased cell migration and is proposed to be regulated via the RAB6A-ECR1-Liprin-α axis. We conclude that RAB6A gene may play significant role in CRC oncogenesis, and could be used as a potential biomarker and therapeutic target in future for better management of a subset of CRCs harbouring this fusion.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias del Colon/genética , Células HCT116 , Movimiento Celular/genética , Biomarcadores
2.
Cancer Res Commun ; 3(10): 2044-2061, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812088

RESUMEN

PARP inhibitors (PARPi) have emerged as a promising targeted therapeutic intervention for metastatic castrate-resistant prostate cancer (mCRPC). However, the clinical utility of PARPi is limited to a subset of patients who harbor aberrations in the genes associated with the homologous recombination (HR) pathway. Here, we report that targeting metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an oncogenic long noncoding RNA (lncRNA), contrives a BRCAness-like phenotype, and augments sensitivity to PARPi. Mechanistically, we show that MALAT1 silencing reprograms the homologous recombination (HR) transcriptome and makes prostate cancer cells more vulnerable to PARPi. Particularly, coinhibition of MALAT1 and PARP1 exhibits a decline in clonogenic survival, delays resolution of γH2AX foci, and reduces tumor burden in mice xenograft model. Moreover, we show that miR-421, a tumor suppressor miRNA, negatively regulates the expression of HR genes, while in aggressive prostate cancer cases, miR-421 is sequestered by MALAT1, leading to increased expression of HR genes. Conclusively, our findings suggest that MALAT1 ablation confers sensitivity to PARPi, thus highlighting an alternative therapeutic strategy for patients with castration-resistant prostate cancer (CRPC), irrespective of the alterations in HR genes. SIGNIFICANCE: PARPi are clinically approved for patients with metastatic CRPC carrying mutations in HR genes, but are ineffective for HR-proficient prostate cancer. Herein, we show that oncogenic lncRNA, MALAT1 is frequently overexpressed in advanced stage prostate cancer and plays a crucial role in maintaining genomic integrity. Importantly, we propose a novel therapeutic strategy that emphasizes MALAT1 inhibition, leading to HR dysfunction in both HR-deficient and -proficient prostate cancer, consequently augmenting their susceptibility to PARPi.


Asunto(s)
MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , ARN Largo no Codificante , Masculino , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Recombinación Homóloga/genética
3.
Biomaterials ; 302: 122296, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696204

RESUMEN

Mesenchymal stem cells (MSCs) are potential candidates in cell-based therapy for cartilage repair and regeneration. However, during chondrogenic differentiation, MSCs undergo undesirable hypertrophic maturation. This poses a risk of ossification in the neo-tissue formed that eventually impedes the clinical use of MSCs for cartilage repair. TGF-ß is a potent growth factor used for chondrogenic differentiation of MSCs, however, its role in hypertrophy remains ambiguous. In the present work, we decipher that TGF-ß activates Wnt/ß-catenin signaling through SMAD3 and increases the propensity of Infrapatellar fat pad derived MSCs (IFP-MSCs) towards hypertrophy. Notably, inhibiting TGF-ß induced Wnt/ß-catenin signaling suppresses hypertrophic progression and enhances chondrogenic ability of IFP-MSCs in plasma hydrogels. Additionally, we demonstrate that activating Wnt signaling during expansion phase, promotes proliferation and reduces senescence, while improving stemness of IFP-MSCs. Thus, conversely modulating Wnt signaling in vitro during expansion and differentiation phases generates hyaline-like cartilage with minimal hypertrophy. Importantly, pre-treatment of IFP-MSCs encapsulated in plasma hydrogel with Wnt modulators followed by subcutaneous implantation in nude mice resulted in formation of a cartilage tissue with negligible calcification. Overall, this study provides technological advancement on targeting Wnt/ß-catenin pathway in a 3D scaffold, while maintaining the standard chondro-induction protocol to overcome the challenges associated with the clinical use of MSCs to engineer hyaline cartilage.


Asunto(s)
Cartílago Hialino , Células Madre Mesenquimatosas , Animales , Ratones , Tejido Adiposo , beta Catenina/metabolismo , Diferenciación Celular , Células Cultivadas , Condrogénesis , Hidrogeles , Hipertrofia/metabolismo , Ratones Desnudos , Ingeniería de Tejidos/métodos , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt
4.
Redox Biol ; 65: 102833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536085

RESUMEN

Ferroptosis, a genetically and biochemically distinct form of programmed cell death, is characterised by an iron-dependent accumulation of lipid peroxides. Therapy-resistant tumor cells display vulnerability toward ferroptosis. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a critical role in cancer cells to become therapy resistant. Tweaking the balance of UPR to make cancer cells susceptible to ferroptotic cell death could be an attractive therapeutic strategy. To decipher the emerging contribution of ER stress in the ferroptotic process, we observe that ferroptosis inducer RSL3 promotes UPR (PERK, ATF6, and IRE1α), along with overexpression of cystine-glutamate transporter SLC7A11 (System Xc-). Exploring the role of a particular UPR arm in modulating SLC7A11 expression and subsequent ferroptosis, we notice that PERK is selectively critical in inducing ferroptosis in colorectal carcinoma. PERK inhibition reduces ATF4 expression and recruitment to the promoter of SLC7A11 and results in its downregulation. Loss of PERK function not only primes cancer cells for increased lipid peroxidation but also limits in vivo colorectal tumor growth, demonstrating active signs of ferroptotic cell death in situ. Further, by performing TCGA data mining and using colorectal cancer patient samples, we demonstrate that the expression of PERK and SLC7A11 is positively correlated. Overall, our experimental data indicate that PERK is a negative regulator of ferroptosis and loss of PERK function sensitizes colorectal cancer cells to ferroptosis. Therefore, small molecule PERK inhibitors hold huge promise as novel therapeutics and their potential can be harnessed against the apoptosis-resistant condition.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias Colorrectales/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Endorribonucleasas/metabolismo , Ferroptosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Cell Death Dis ; 13(12): 1045, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522339

RESUMEN

Owing to its ability to induce cellular senescence, inhibit PCNA, and arrest cell division cycle by negatively regulating CDKs as well as being a primary target of p53, p21 is traditionally considered a tumor suppressor. Nonetheless, several reports in recent years demonstrated its pro-oncogenic activities such as apoptosis inhibition by cytosolic p21, stimulation of cell motility, and promoting assembly of cyclin D-CDK4/6 complex. These opposing effects of p21 on cell proliferation, supported by the observations of its inconsistent expression in human cancers, led to the emergence of the concept of "antagonistic duality" of p21 in cancer progression. Here we demonstrate that p21 negatively regulates basal autophagy at physiological concentration. Akt activation, upon p21 attenuation, driven ROS accumulation appears to be the major underlying mechanism in p21-mediated modulation of autophagy. We also find p21, as a physiological inhibitor of autophagy, to have oncogenic activity during early events of tumor development while its inhibition favors survival and growth of cancer cells in the established tumor. Our data, thereby, reveal the potential role of autophagy in antagonistic functional duality of p21 in cancer.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Autofagia
7.
Nat Commun ; 13(1): 7344, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446780

RESUMEN

Triple-Negative Breast Cancer (TNBC) has a poor prognosis and adverse clinical outcomes among all breast cancer subtypes as there is no available targeted therapy. Overexpression of Enhancer of zeste homolog 2 (EZH2) has been shown to correlate with TNBC's poor prognosis, but the contribution of EZH2 catalytic (H3K27me3) versus non-catalytic EZH2 (NC-EZH2) function in TNBC progression remains elusive. We reveal that selective hyper-activation of functional EZH2 (H3K27me3) over NC-EZH2 alters TNBC metastatic landscape and fosters its peritoneal metastasis, particularly splenic. Instead of H3K27me3-mediated repression of gene expression; here, it promotes KRT14 transcription by attenuating binding of repressor SP1 to its promoter. Further, KRT14 loss significantly reduces TNBC migration, invasion, and peritoneal metastasis. Consistently, human TNBC metastasis displays positive correlation between H3K27me3 and KRT14 levels. Finally, EZH2 knockdown or H3K27me3 inhibition by EPZ6438 reduces TNBC peritoneal metastasis. Altogether, our preclinical findings suggest a rationale for targeting TNBC with EZH2 inhibitors.


Asunto(s)
Neoplasias Peritoneales , Neoplasias de la Mama Triple Negativas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Queratina-14/genética , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
8.
Subcell Biochem ; 100: 557-579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301506

RESUMEN

Chromatin is an organized complex of DNA, histone proteins, and RNA. Chromatin modifications include DNA methylation, RNA methylation, and histone acetylation and methylation. The methylation of chromatin complexes predominantly alters the regulation of gene expression, and its deregulation is associated with several human diseases including cancer. Cancer is a disease characterized by dynamic changes in the genetic and epigenetic architecture of a cell. Altered DNA methylation by DNA methyltransferases (DNMTs) and m6A RNA methylation facilitate tumor initiation and progression and thus serve as critical targets for cancer therapy. Small-molecule modulators of these epigenetic targets are at the hotspots of current cancer drug discovery research. Indeed, recent studies have led to the discovery of several chemical modulators against these targets, some of which have already gained approval for cancer therapy while others are undergoing clinical trials. In this chapter, we will focus on the role of small-molecule modulators in regulating DNA/RNA methylation and their implications in cancer.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Histonas/metabolismo , Epigénesis Genética , ARN/genética , ARN/metabolismo , ARN/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Cromatina , ADN/metabolismo
9.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188790, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36058380

RESUMEN

The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.


Asunto(s)
Neoplasias de la Mama , Compuestos Heterocíclicos , Receptores CXCR4 , Neoplasias de la Mama/patología , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Femenino , Movilización de Célula Madre Hematopoyética , Humanos , Ligandos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
10.
Cytokine ; 156: 155916, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644058

RESUMEN

A subpopulation of cells in many cancers has stem cell traits, mediates metastasis, and contributes to treatment resistance. These cells are considered as cancer stem cells (CSCs). CSC properties of tumor cells are immensely regulated by close interactions with tumor microenvironment components such as mesenchymal stem cells, tumor related fibroblasts, adipocytes, endothelial cells, and immune cells via the intricate network of cytokines, chemokines, and growth factors. Inflammatory cytokines including interleukin (IL)-1, IL-6, and IL-8 play a major role in these interactions via the activation of signal transduction pathways like Stat3/NF-κB etc. in stromal and tumor cells. The activation of these pathways increases the release of more cytokines, resulting in positive feedback loops which help in CSC self-renewal. The pathways controlled by these cytokine loops are similar to those that are active during chronic inflammation and wound healing, suggesting that they might have critical role in establishing relationship between inflammation and cancer. Anti-inflammatory drugs have been identified to inhibit these cytokines and their receptor mediated pathways. These agents have the potential to target CSCs by inhibiting signals from the tumor microenvironment and considered to be a potential candidate for future therapeutics. The significance of cytokines released from the tumor microenvironment in different phases of cancer, as well as their potential application in cancer therapeutics is discussed in this article.


Asunto(s)
Células Endoteliales , Neoplasias , Quimiocinas , Citocinas/metabolismo , Células Endoteliales/metabolismo , Humanos , Inflamación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral/fisiología
11.
ACS Appl Mater Interfaces ; 14(6): 7531-7550, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119254

RESUMEN

Developing stiff and resilient injectable hydrogels that can mechanically support load-bearing joints while enabling chondrogenic differentiation of stem cells is a major challenge in the field of cartilage tissue engineering. In the present work, a triple-network injectable hydrogel system was engineered using Bombyx mori silk fibroin, carboxymethyl cellulose (CMC), and gelatin. The developed hydrogel demonstrated a simultaneous increase in both stiffness and contraction over time, thereby imparting a four-dimensional (4D) evolving niche to the cells. While resilience was provided by CMC, the dynamic alterations in the hydrogel matrix were attributed to the formation of ß-sheets in silk. The engineered contraction facilitated condensation of cells that mimicked an important step during cartilage development. Subsequently, this led to downregulation of YAP signaling and enhanced chondrogenic commitment of stem cells. More importantly, the in vivo study showed that the ectopically regenerated cartilage was mature and closely resembled native articular cartilage. Overall, this strategy of engineering mechanotransduction that promotes chondrogenesis by contraction-mediated condensation is a promising and translatable approach for cartilage repair.


Asunto(s)
Cartílago Articular , Condrogénesis , Diferenciación Celular , Hidrogeles/farmacología , Mecanotransducción Celular , Células Madre , Ingeniería de Tejidos
12.
Mol Pharm ; 19(3): 831-842, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35191706

RESUMEN

To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection. The transformed depot system can be preprogrammed to provide tailored drug release intratumorally, over a period of one week to one month. To establish the efficacy of the developed L3CS, doxorubicin is used as a model drug. The drug release mechanism is studied in detail both in vitro and in vivo, and the efficacy of the developed system is investigated in the murine 4T1 tumor model. The direct intratumoral injection of the L3CS provided localized delivery of doxorubicin inside the tumor and restricted its access within the tumor only for a sustained period of time. This led to an over 10-fold reduction in tumor burden, reduced cardiotoxicity, and a significant increase in the median survival rate, compared to the control group. The developed L3CS thus provides an efficient strategy for localized chemotherapy against unresectable solid tumors with a great degree of spatial and temporal control over drug delivery.


Asunto(s)
Cristales Líquidos , Animales , Cardiotoxicidad , Doxorrubicina , Liberación de Fármacos , Lípidos , Ratones
13.
Cell Death Dis ; 12(5): 464, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966046

RESUMEN

Chemokine receptor CXCR4 overexpression in solid tumors has been strongly associated with poor prognosis and adverse clinical outcome. However, blockade of CXCL12-CXCR4 signaling axis by inhibitors like Nox-A12, FDA approved CXCR4 inhibitor drug AMD3100 have shown limited clinical success in cancer treatment. Therefore, exclusive contribution of CXCR4-CXCL12 signaling in pro-tumorigenic function is questionable. In our pursuit to understand the impact of chemokine signaling in carcinogenesis, we reveal that instead of CXCR4-CXCL12 signaling, presence of CXCR4 intracellular protein augments paclitaxel resistance and pro-tumorigenic functions. In search of pro-apoptotic mechanisms for CXCR4 mediated drug resistance; we discover that DR5 is a new selective target of CXCR4 in breast and colon cancer. Further, we detect that CXCR4 directs the differential recruitment of transcription factors p53 and YY1 to the promoter of DR5 in course of its transcriptional repression. Remarkably, inhibiting CXCR4-ligand-mediated signals completely fails to block the above phenotype. Overexpression of different mutant versions of CXCR4 lacking signal transduction capabilities also result in marked downregulation of DR5 expression in colon cancer indeed confirms the reverse relationship between DR5 and intracellular CXCR4 protein expression. Irrespective of CXCR4 surface expression, by utilizing stable gain and loss of function approaches, we observe that intracellular CXCR4 protein selectively resists and sensitizes colon cancer cells against paclitaxel therapy in vitro and in vivo. Finally, performing TCGA data mining and using human breast cancer patient samples, we demonstrate that expression of CXCR4 and DR5 are inversely regulated. Together, our data suggest that targeting CXCR4 intracellular protein may be critical to dampen the pro-tumorigenic functions of CXCR4.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Línea Celular Tumoral , Femenino , Humanos
14.
Org Biomol Chem ; 19(19): 4352-4358, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33908567

RESUMEN

A simple and straightforward process for the synthesis of rapamycin peptide conjugates in a regio and chemoselective manner was developed. The methodology comprises the tagging of chemoselective functionalities to rapamycin and peptides which enables the conjugation of free peptides, without protecting the functionality of the side chain amino acids, in high yield and purity. From this methodology, we successfully conjugate free peptides containing up to 15 amino acids. Rapamycin is also conjugated to the peptides known for inhibiting the kinase activity of Akt protein. These conjugates act as dual target inhibitors and inhibit the kinase activity of both mTOR and Akt.


Asunto(s)
Sirolimus
15.
Epigenetics ; 16(2): 144-161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32635858

RESUMEN

Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.


Asunto(s)
Neoplasias del Colon , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Células Madre Neoplásicas , Piranos/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Metilación de ADN , Epigénesis Genética , Humanos , Células Madre Neoplásicas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
16.
Cell Prolif ; 53(4): e12749, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32167212

RESUMEN

OBJECTIVES: Given that autophagy inhibition is a feasible way to enhance sensitivity of cancer cells towards chemotherapeutic agents, identifying potent autophagy inhibitor has obvious clinical relevance. Here, we investigated ability of TN-16, a microtubule disrupting agent, on modulation of autophagic flux and its significance in promoting in vitro and in vivo cancer cell death. MATERIALS AND METHODS: The effect of TN-16 on cancer cell proliferation, cell division, autophagic process and apoptotic signalling was assessed by various biochemical (Western blot and SRB assay), morphological (TEM, SEM, confocal microscopy) and flowcytometric assays. In vivo anti-tumour efficacy of TN-16 was investigated in syngeneic mouse model of breast cancer. RESULTS: TN-16 inhibited cancer cell proliferation by impairing late-stage autophagy and induction of apoptosis. Inhibition of autophagic flux was demonstrated by accumulation of autophagy-specific substrate p62 and lack of additional LC3-II turnover in the presence of lysosomotropic agent. The effect was validated by confocal micrographs showing diminished autophagosome-lysosome fusion. Further studies revealed that TN-16-mediated inhibition of autophagic flux promotes apoptotic cell death. Consistent with in vitro data, results of our in vivo study revealed that TN-16-mediated tumour growth suppression is associated with blockade of autophagic flux and enhanced apoptosis. CONCLUSIONS: Our data signify that TN-16 is a potent autophagy flux inhibitor and might be suitable for (pre-) clinical use as standard inhibitor of autophagy with anti-cancer activity.


Asunto(s)
Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Pirrolidinonas/uso terapéutico , Moduladores de Tubulina/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/patología , Neoplasias/metabolismo , Neoplasias/patología , Pirrolidinonas/farmacología , Moduladores de Tubulina/farmacología
17.
Nat Commun ; 11(1): 384, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959826

RESUMEN

Emergence of an aggressive androgen receptor (AR)-independent neuroendocrine prostate cancer (NEPC) after androgen-deprivation therapy (ADT) is well-known. Nevertheless, the majority of advanced-stage prostate cancer patients, including those with SPINK1-positive subtype, are treated with AR-antagonists. Here, we show AR and its corepressor, REST, function as transcriptional-repressors of SPINK1, and AR-antagonists alleviate this repression leading to SPINK1 upregulation. Increased SOX2 expression during NE-transdifferentiation transactivates SPINK1, a critical-player for maintenance of NE-phenotype. SPINK1 elicits epithelial-mesenchymal-transition, stemness and cellular-plasticity. Conversely, pharmacological Casein Kinase-1 inhibition stabilizes REST, which in cooperation with AR causes SPINK1 transcriptional-repression and impedes SPINK1-mediated oncogenesis. Elevated levels of SPINK1 and NEPC markers are observed in the tumors of AR-antagonists treated mice, and in a subset of NEPC patients, implicating a plausible role of SPINK1 in treatment-related NEPC. Collectively, our findings provide an explanation for the paradoxical clinical-outcomes after ADT, possibly due to SPINK1 upregulation, and offers a strategy for adjuvant therapies.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Tumores Neuroendocrinos/genética , Neoplasias de la Próstata/genética , Inhibidor de Tripsina Pancreática de Kazal/metabolismo , Antagonistas de Receptores Androgénicos/uso terapéutico , Animales , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/metabolismo , Línea Celular Tumoral , Proteínas Co-Represoras/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/patología , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Med Chem ; 188: 112011, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31926468

RESUMEN

Therapy resistance by evasion of apoptosis is one of the hallmarks of human cancer. Therefore, restoration of cell death by non-apoptotic mechanisms is critical to successfully overcome therapy resistance in cancer. By rational drug design approach, here we try to provide evidence that subtle changes in the chemical structure of spisulosine completely switched its cytotoxic function from apoptosis to autophagy. Our most potent molecule (26b) in a series of 16 synthesized derivatives showed robust autophagic cell death in diverse cancer cells sparing normal counterpart. Compound 26b mediated lethal autophagy induction was confirmed by formation of characteristic autophagic vacuoles, LC3 puncta formation, upregulation of signature autophagy markers like Beclin and Atg family proteins. Altogether, we have detected novel autophagy inducer small molecule which can be tested further for drug discovery research.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Lípidos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Lípidos/síntesis química , Lípidos/química , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
J Biomol Struct Dyn ; 38(1): 168-185, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30686140

RESUMEN

Triple-negative breast cancers (TNBCs) are one of the most aggressive and complex forms of cancers in women. TNBCs are commonly known for their complex heterogeneity and poor prognosis. The present work aimed to develop a predictive 2D and 3D quantitative structure-activity relationship (QSAR) models against metastatic TNBC cell line. The 2D-QSAR was based on multiple linear regression analysis and validated by Leave-One-Out (LOO) and external test set prediction approach. QSAR model presented regression coefficient values for training set (r2), LOO-based internal regression (q2) and external test set regression (pred_r2) which are 0.84, 0.82 and 0.75, respectively. Five properties, Epsilon4 (electronegativity), ChiV3cluster (valence molecular connectivity index), chi3chain (retention index for three-membered ring), TNN5 (nitrogen atoms separated through 5 bond distance) and nitrogen counts, were identified as important structural features responsible for anticancer activity of MDA-MB-231 inhibitors. Five novel derivatives of glycyrrhetinic acid (GA) named GA-1, GA-2, GA-3, GA-4 and GA-5 were semi-synthesised and screened through the QSAR model. Further, in vitro activities of the derivatives were analysed against human TNBC cell line, MDA-MB-231. The result showed that GA-1 exhibits improved cytotoxic activity to that of parent compound (GA). Further, atomic property field (APF)-based 3D-QSAR and scoring recognise C-30 carboxylic group of GA-1 as major influential factor for its anticancer activity. The significance of C-30 carboxylic group in GA derivatives was also confirmed by molecular docking study against cancer target glyoxalase-I. Finally, the oral bioavailability and toxicity of GA-1 were assessed by computational ADMET studies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos/química , Ácido Glicirretínico/análogos & derivados , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Algoritmos , Antineoplásicos/farmacología , Línea Celular Tumoral , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacología , Humanos , Hidrólisis , Modelos Moleculares , Estructura Molecular , Neoplasias de la Mama Triple Negativas
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1130-1131: 121829, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670104

RESUMEN

S011-2111 is a semicarbazone and chalcone hybrid demonstrating antiproliferative tumor cell-selective effects along with unique antimetastatic potential by mitigating PP2A-ß-catenin signalling pathway. The present study envisaged to explore the in vitro and in vivo pharmacokinetics of S011-2111. A sensitive and selective liquid chromatography-tandem mass spectrometry bioanalytical method was developed and validated to determine S011-2111. It has high permeability across intestinal membrane as observed in in situ single-pass intestinal perfusion study. It has high plasma protein binding and poor aqueous solubility. It was rapidly partitioning into plasma of blood, where it was moderately stable. In mice liver microsomal stability study, S011-2111 was stable against cytochrome P450 enzymes but undergoes rapid glucuronidation with intrinsic clearance of 148.6 ±â€¯48.3 µL/min/mg. Following 100 mg/kg oral dosing of S011-2111, the compound was detectable in the plasma samples up to 24 h with a maximum plasma concentration of 45 ±â€¯16.5 ng/mL at 2.4 ±â€¯0.1 h and absolute bioavailability of 1.68%. Knowledge from this research will assist in further development of S011-2111 as an anti-cancer agent.


Asunto(s)
Cromatografía Liquida/métodos , Inhibidores Enzimáticos , Proteína Fosfatasa 2/antagonistas & inhibidores , Espectrometría de Masas en Tándem/métodos , beta Catenina/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/sangre , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Eritrocitos , Femenino , Absorción Intestinal , Masculino , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA